
Tabu search with feasible and infeasible

searches for equitable coloring

Wenyu Wang a, Jin-Kao Hao b,c, Qinghua Wu a,∗

aSchool of Management, Huazhong University of Science and Technology, No.
1037, Luoyu Road, Wuhan, China

bLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers, Cedex 01, France
cInstitut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France

Engineering Applications of Artificial Intelligence, 2018
https://doi.org/10.1016/j.engappai.2018.01.012

Abstract

The equitable coloring problem is a variant of the classical graph coloring prob-
lem that arises from a number of real-life applications where the cardinality of color
classes must be balanced. In this paper, we present a highly effective hybrid tabu
search method for the problem. Based on three complementary neighborhoods, the
algorithm alternates between a feasible local search phase where the search focuses
on the most relevant feasible solutions and an infeasible local search phase where a
controlled exploration of infeasible solutions is allowed by relaxing the equity con-
straint. A novel cyclic exchange neighborhood is also proposed in order to enhance
the search ability of the hybrid tabu search algorithm. Experiments on a set of 73
benchmark instances in the literature indicate that the proposed algorithm is able
to find improved best solutions for 15 instances (new upper bounds) and matches
the best-known solutions for 57 instances. Additional analyses show the interest of
the cyclic exchange neighborhood and the hybrid scheme combining both feasible
and infeasible local searches.

Keywords: tabu search; heuristics; infeasible local search; equitable coloring; ver-
tex coloring.

∗ Corresponding author.
Email addresses: Wang.Wen.Yu@foxmail.com (Wenyu Wang),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), qinghuawu1005@gmail.com
(Qinghua Wu).

Preprint submitted to Elsevier 22 February 2018

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E. A
subset I of V is an independent set if no two vertices in I are joined by an
edge in E [29]. A k-coloring of G is any partition of V into k mutually disjoint
subsets (also called color classes). A k-coloring is said legal if each of its color
classes is an independent set. The graph k-coloring problem is to find a legal
k-coloring of G for a given k. The classical graph coloring problem (GCP) is
to determine a legal k-coloring with k minimum for a general graph G (this
minimum k is called the chromatic number of G and is denoted by χ(G)).

In this paper, we are interested in a related coloring problem known as the
equitable coloring problem (ECP for short) [39], which adds an additional
equity constraint to the GCP – the sizes of any two color classes differ in at
most one unit. In other words, an equitable k-coloring of G (denoted by k-
eqcoloring) is a legal k-coloring {V1, V2, ..., Vk} satisfying the following equity
constraint [38]: for any two color classes Vi and Vj (i ̸= j), ||Vi|−|Vj|| ≤ 1 where
|Vl| is the cardinality of color class Vl. The ECP is to determine the minimum
integer k such that G admits an equitable k-coloring. This minimum k is called
the equitable chromatic number of G and is denoted by χeq(G). Clearly, the
chromatic number of a graph is a lower bound of the equitable chromatic
number of the graph.

The ECP is known to be NP-hard in the general case [17]. In addition to
its significance as a difficult combinatorial problem, the ECP is notable for
its ability to formulate a number of practical problems. A simple example
concerns the problem of assigning a set of workers to a set of tasks. Pairs of
tasks may conflict each other and must not be assigned to the same worker.
In addition, it is desirable that the number of tasks assigned to each worker
be approximately the same for the consideration of fairness. The problem can
be modeled by building a graph where a vertex corresponds to a task and
an edge is created for each conflicting pair of tasks. Now if we represent the
workers by colors, then this workforce assignment problem reduces to finding
an equitable coloring in the corresponding graph. Other applications of the
ECP arise from garbage collection [47], scheduling in communication systems
[27] and load balancing in multiprocessor machines [17]. An introduction to
the ECP and some basic results are provided in [16].

Despite its relevance, the ECP has been studied essentially from a theoretical
point of view. For instance, Hajnal and Szemerédi [24] proved that a graph
G has an equitable (∆(G) + 1)-coloring where ∆(G) is the maximum vertex
degree of G. Meyer [39] conjectured that χeq(G) ≤ ∆(G) for all connected
graphs except the complete graphs and the odd cycles. This conjecture has
been confirmed to be true for some special cases such as connected bipartite

2

graphs [33], trees [11], outerplanar graphs [30,49] and graphs with ∆(G) ≥
1
2
|V | or ∆(G) ≤ 3 [12]. Kostochka and Nakprasit [31] showed that graphs with

an average degree up to ∆(G)/5 are equitably k-colorable for every k ≥ ∆(G).
In addition, some special cases such as graphs with bounded treewidth [5] have
also been identified to admit efficient polynomial algorithms or approximation
algorithms.

For the purpose of practical solving of the general ECP, several exact and
heuristic algorithms were recently proposed in the literature. Exact approaches
have theoretical advantage of guaranteeing the optimality of the solution
found, but they need a time that grows exponentially with the problem size
in the general case. Still, several effective mathematical formulations and al-
gorithms have been proposed for exactly solving the ECP. For instance, based
on the asymmetric representative formulation for the GCP described in [8],
Bahiense et al. [4] investigated the integer linear programming approach and
developed effective branch-and-cut algorithms for the ECP. Méndez-Dı́az et
al. [36] adapted to the ECP the formulation and techniques used in [35], stud-
ied its polyhedral structure and derived families of valid inequalities. Some
of these inequalities were proven to be very effective for a cutting-plane algo-
rithm. Very recently, Méndez-Dı́az et al. [38] proposed a DSATUR-based exact
algorithm that exploits arithmetical properties inherent in equitable colorings
and combines them with the techniques originally developed by Brown [7] and
Brélaz [6] for DSATUR, and improved by San Segundo [44] and Sewell [45].

On the other hand, given the intrinsic intractability of the ECP, practical
heuristics have been devised to handle problem instances whose optimal so-
lutions cannot be reached by exact approaches. Specifically, Furmańczyk and
Kubale [16] proposed two constructive greedy heuristics to generate an equi-
table coloring of a graph. Méndez-Dı́az et al. [37] adapted to the ECP the
implementation due to Galinier and Hao [18] of the Tabucol algorithm ini-
tially proposed by Hertz and de Werra [26] for the GCP. Very recently, Lai et
al. [32] proposed a backtracking based iterated tabu search (BITS) algorithm
for the ECP, which produced highly competitive results on a set of commonly
used benchmarks.

Compared with the GCP for which a huge number of heuristic algorithms have
been investigated, the ECP is surprisingly much less studied – only two recent
local search approaches are available in the literature [32,37]. In this work, we
aim to partially fill the gap by introducing a new hybrid tabu search (HTS)
method that incorporates a combined use of both feasible and infeasible local
searches. Our proposed hybrid tabu search is mainly motivated by two con-
siderations. First, from the perspective of solution methods, tabu search has
shown to be the most effective local search algorithm for the classical GCP
[19] as well as many of its variants such as sum coloring [28] and T-coloring
[15]. Second, from the perspective of the problem under investigation, ECP is

3

a variant of the classical GCP where color class’s equity is imposed as a strict
constraint. As for strictly constrained problems, imposing solution feasibility
within a neighborhood search algorithm often restricts the search process too
much, while exploiting the infeasibility can help explore the search space more
effectively [3,10,21,41]. Especially, methods that can tunnel through feasible
and infeasible regions are particularly attractive as a means to solve these
highly constrained problems [10,21,42]. Inspired by these two observations, we
proposed a hybrid TS method combining both feasible and infeasible local
searches to effectively explore the search space of the ECP. The main contri-
butions of this work can be summarized as follows.

• From the algorithm perspective, the proposed HTS approach distinguishes
itself by several original features. First, we investigate a hybrid scheme
which integrates both feasible and infeasible local searches within the same
search algorithm in the context of solving the ECP. By relaxing the equity
constraint in a controlled manner, the search algorithm is allowed to tun-
nel through feasible and infeasible regions to reach global optima or high
quality solutions which are difficult to attain by only visiting feasible so-
lutions. Second, to ensure an effective local optimization, we introduce a
novel constrained-three-cyclic-exchange neighborhood which complements
two existing neighborhoods. Third, all these ingredients are integrated in
the proposed hybrid tabu search algorithm which is able to explore the
solution space effectively.
• From the computational perspective, the proposed approach shows a very
competitive performance on the set of 73 commonly used benchmarks. The
computational results indicate that our algorithm improves the best-known
solutions for 15 instances (new upper bounds) and matches the best-known
results for 57 instances. Only for one instance the algorithm misses the best-
known result. In particular, for several well-known DIMACS instances, our
approach can significantly improve the current best-known results.

The remainder of this paper is organized as follows. In section 2, we present
the proposed algorithm for solving the ECP. Section 3 is dedicated to compu-
tational results and comparisons with state-of-the-art approaches. Section 4
investigates some important components of the HTS algorithm to understand
their impacts on the performance of the algorithm. Concluding remarks are
given in Section 5.

2 A hybrid tabu search algorithm for the ECP

Like the GCP [19], the ECP can be approximated by solving a series of eq-
uitable k-coloring problems (denoted by k-ECP). We start with an initial
number of k colors (k ≤ |V |) and solve the associated k-ECP. If an equitable

4

legal k-coloring (i.e., k-eqcoloring) is found, k is decreased by one and a new
k-eqcoloring is sought. This process is repeated until no k-eqcoloring can be
found. The last k-eqcoloring constitutes an approximation of the minimum
equitable coloring of the graph. Consequently, the ECP comes down to the
problem of finding k-eqcolorings for a given k. Our HTS algorithm follows the
above solution procedure and is designed to find a conflict-free k-eqcoloring
from an initially conflicting k-eqcoloring. To rapidly determine an appropriate
initial number of k colors that admits an equitable k-coloring, we apply the
same binary search method proposed in [32].

2.1 Main framework

Algorithm 1 Main scheme of the hybrid tabu search algorithm for the k-ECP
Require: Graph G = (V,E), the number k of colors used
Ensure: A k-equitable coloring if found
1: s0 = greedy generate(G,k) /*Section 2.3 */
2: while stopping condition is not met do
3: /*the feasible local search phase*/
4: (s1, slocal best)← feasible local search(s0) /*Section 2.5*/
5: if f(slocal best) = 0 then
6: return(slocal best)
7: end if
8: /*the infeasible local search phase*/
9: (s0, slocal best)← infeasible local search(s1) /*Section 2.6*/
10: if slocal best is a feasible solution and f(slocal best) = 0 then
11: return(slocal best)
12: end if
13: end while

Given the highly constrained feature of the k-ECP imposed by the equity
constraint, one key issue to be considered is how to design search strategies
to effectively explore the complex search space of the problem. Indeed, as ob-
served in other studies [3,9,10,21,40,42], for strongly constrained combinatorial
optimization problems, accounting for problem constraints in the definition of
the search space can lead to one search space where the feasible region of-
ten consists of components which are separated from each other by infeasible
regions [22]. In this case, imposing solution feasibility during the search of-
ten prevents the search from exploring new promising areas and sometimes
may make the search process blocked. To unlock the situation, one attractive
strategy is to allow a controlled exploration of infeasible solutions with the
purpose of facilitating transitions between structurally different high-quality
solutions [3,22]. Based on this idea, the proposed hybrid tabu search algorithm
combines the exploitation ability of its feasible local search component with
the exploration ability of its infeasible local search component to effectively
explore the search space of the k-ECP.

5

The general HTS algorithm is described in Algorithm 1. Basically, the algo-
rithm alternates between a feasible local search phase (FLS for short) where
only solutions satisfying the equity constraint are examined and an infeasible
local search phase (ILS for short) during which the equity constraint is relaxed
in a controlled manner. These two search phases play different roles in our al-
gorithm. FLS is used to ensure the exploitation capability of the algorithm
by focusing on the most relevant feasible regions while ILS is responsible for
search exploration by guiding the algorithm towards unexplored search re-
gions. By alternating between these two complementary search phases, the
algorithm can maintain a balance between the exploration and the exploita-
tion of its search process and is expected to visist various zones of the search
space. Additional analyses demonstrate that the combined use of these two
search strategies within the HTS algorithm constitutes an effective hybridiza-
tion and plays an important role in ensuring the performance of the algorithm
(Section 4.2).

Starting from an initial feasible solution (Sections 2.2 and 2.3), the search
first performs the feasible local search phase (Section 2.5). During the FLS
phase, only feasible solutions satisfying the equity constraint are considered
with the aim of finding a (feasible) conflict-free k-eqcoloring. For this purpose,
it explores intensively the feasible search space through a joint use of three
complementary neighborhoods induced by three move operators (Section 2.4).
At each iteration of FLS, the algorithm explores the union of these neighbor-
hoods and selects one overall best admissible (non-tabu or globally improving)
neighbor solution which reduces the most the number of conflicting edges.

When FLS is judged to be trapped in a deep local optimum, the algorithm
switches to the infeasible local search phase to bring more search freedom
into the search process. The basic idea of the ILS procedure is to allow the
search to move into the infeasible space by relaxing the equity constraint
in a controlled manner with the purpose of first locating a conflict-free k-
coloring near the boundary of the feasible region which still violates the equity
constraint. Using this promising infeasible (relative to the equity constraint)
solution as a starting point, our ILS algorithm seeks to induce the search to
gradually converge to another promising feasible region, while simultaneously
searching for a conflict-free feasible solution by optimizing both the number of
conflicting edges and the infeasibility degree of the solutions. To achieve this,
three basic types of move operations are applied and the directional move
operation transferring vertices from color classes of larger cardinality to color
classes of smaller cardinality is selected with a higher priority.

Finally, if the ILS phase fails to find a conflict-free k-coloring satisfying the
equity constraint, the HTS algorithm switches back to the FLS phase for
further improvement. The algorithm then iterates the above two search phases
until a feasible conflict-free solution is found or a predefined stop condition

6

(typically a fixed timeout limit) is verified.

2.2 Search space and evaluation function

For a given k-ECP instance, the search space Ω explored by our algorithm is
composed of all possible k-colorings which may or may not satisfy the equity
constraint. A candidate solution in Ω (i.e., a k-coloring) is therefore any par-
tition of the vertex set into k subsets V1,...,Vk. For a given candidate solution
s = {V1, ..., Vk}, if for all {u, v} ∈ E, u ∈ Vi and v ∈ Vj, i ̸= j, then s is a
conflict-free or legal k-coloring. Otherwise, s is a conflicting k-coloring. Fur-
thermore, s is said feasible if it satisfies the equity constraint. Otherwise, it is
said infeasible.

For a given infeasible solution s = {V1, ..., Vk} (i.e., the equity constraint
is not satisfied), the degree of infeasibility of the solution s is measured by
DI(s) =

∑k
1⌊||Vi| − n

k
|⌋ where ⌊.⌋ denotes the integer part of a positive real

number and n is the number of vertices of G. Notice that a feasible solution
is not necessarily a conflict-free solution. Then, the search space Ωf ⊂ Ω
explored by the feasible local search procedure is composed of all possible
k-colorings satisfying the equity constraint while the search space explored
by the infeasible local search procedure includes both feasible and infeasible
k-colorings (i.e., Ω).

Given a k-coloring s = {V1, ..., Vk} in Ω, which can be feasible or infeasible, the
evaluation function f(s) counts the total number of conflicting edges induced
by s such that:

f(s) =
∑

{u,v}∈E
γuv (1)

where

γuv =

 1, if u ∈ Vi, v ∈ Vj and i = j,

0, otherwise.

Therefore, a candidate solution s with f(s) = 0 corresponds to a legal (i.e.,
conflict-free) k-coloring. It is a feasible solution if it additionally satisfies the
equity constraint. Our HTS algorithm aims to find such a feasible conflict-free
solution.

7

2.3 Generation of initial solutions for the k-ECP

The HTS algorithm begins with an initial solution s ∈ Ω which is a conflicting
k-coloring that satisfies the equity constraint. The algorithm then tries to im-
prove s by minimizing its number of conflicting edges. Specifically, we employ
a greedy construction method similar to those applied in [32,37] to generate
an initial k-eqcoloring s = {V1, ..., Vk}. Let U denote the set of unassigned ver-
tices. Initially, U is set to V and all color classes V1,...,Vk of s are set to empty.
Then we randomly pick k distinct vertices from U and use each of these k ver-
tices to initialize a different color class. In each subsequent construction step,
the k color classes V1,...,Vk are considered in turn (see [32]) and the unassigned
vertices are assigned to V1,...,Vk one by one in a greedy way. Precisely, in step
m, color class Vm%k is considered, and an unassigned vertex v ∈ U that has
the minimum number of adjacent vertices in Vm%k is identified and assigned to
Vm%k (ties are broken randomly). This process is repeated until all vertices are
assigned to a color class. Note that this construction procedure only ensures
the equity constraint of an initial solution while the coloring constraint will
be satisfied by the search algorithm.

2.4 Basic move operators and neighborhoods

One of the most critical features of local search is the definition of its neighbor-
hood. Typically, a neighborhood is defined by a move operator that transforms
a given solution s into a neighbor solution s0. Our HTS algorithm jointly em-
ploys three basic move operators to generate its three neighborhoods which
are explored during its two search phases: the directional-one-move operator
defined by moving a vertex from a larger color class to a smaller color class,
the two-exchange operator based on exchanging two vertices from different
color classes, and the constrained-three-cyclic-exchange operator consisting in
transferring vertices among three different color classes. The directional-one-
move and two-exchange operators have been previously used in [37,32] while
the novel constrained-three-cyclic-exchange operator is introduced for the first
time in this work. In what follows, we introduce these three neighborhoods.

1) Two traditional neighborhoods: Given a solution s = {V1, ..., Vk},
let C(s) be the set of conflicting vertices in s, where a vertex is said to be
conflicting if it belongs to the same color class as one of its adjacent vertices.
The directional-one-move and two-exchange operators are described as follows:

• Directional-one-move (N1): This move operator transfers a conflicting ver-
tex v ∈ C(s) from its current color class Vi to another color class Vj such
that i ̸= j and |Vi| > |Vj|. In order to efficiently evaluate the move gain in-

8

duced by a directional-one-move move, which indicates how much a coloring
is improved in terms of the number of conflicting edges after the move, we
adopt the fast incremental evaluation technique first developed for the graph
coloring problem [18]. The main idea is to maintain a n× k matrix Λ with
elements Λ[v][q] recording the number of vertices adjacent to v in color class
Vq (1 ≤ q ≤ k). With this memory, the move gain of a directional-one-move
operation can be conveniently computed by:

∆v,Vi,Vj
= Λ[v][j] − Λ[v][i] (2)

Once a directional-one-move operation is performed, one just needs to up-
date a subset of values in Λ affected by this move as follows. For each vertex
u adjacent to vertex v, Λ[u][i] ← Λ[u][i] − 1, and Λ[u][j] ← Λ[u][j] + 1. Clearly,
updating Λ can be done in O(n).
• Two-exchange (N2): This move operator swaps a pair of vertices (u, v) from
two different color classes where at least one of them is a conflicting vertex.
Suppose u ∈ Vpu and v ∈ Vpv, then the move gain of a two-exchange move
can be efficiently computed by:

∆u,v = Λ[u][pv] − Λ[u][pu] + Λ[v][pu] − Λ[v][pv] − 2euv

where euv = 1 if u and v are adjacent in the graph, otherwise euv = 0. Since
a two-exchange move can be decomposed into two independent one vertex
moves consisting in moving a vertex from its current color class to another
color class, the update of the matrix Λ after a two-exchange move can also
be realized in O(n).

Note that for our FLS procedure, the directional-one-move operator is only
applicable when n does not divide k, since this operator always moves vertices
from a large color class to a small color class. Meanwhile, when n divides k, all
color classes have the same size. For a feasible solution s ∈ Ω, its feasibility can
always be maintained under both the directional-one-move and two-exchange
operators.

2) New Constrained-Three-Cyclic-Exchange neighborhood: To rein-
force the search ability of our HTS algorithm, we introduce a novel neighbor-
hood N3 based on the constrained-three-cyclic-exchange move operator, which
transfers vertices among three color classes under the equity constraint.

Constrained-three-cyclic-exchange (N3): This move operator displaces three
vertices a, b and c from three different color classes in a cyclic way (see Fig.
1 for an example). The move gain of exchanging three vertices a, b and c
(suppose a ∈ Vpa, b ∈ Vpb and c ∈ Vpc) can be calculated by

∆a,b,c = Λ[a][pb] − Λ[a][pa] + Λ[b][pc] − Λ[b][pb] + Λ[c][pa] − Λ[c][pc] − l (3)

where l ∈ {0, 1, 2, 3} is the number of edges between vertices a, b and c.

9

Clearly, such an unconstrained three-cyclic-exchange move leads to a neigh-
borhood whose size is bounded by O(n3), which is quite large compared to
the neighborhoods induced by the directional-one-move and two-exchange op-
erators and thus very expensive to explore by our tabu search procedure.

To increase the computational efficiency of the search procedure, we devise a
constrained neighborhood which is both more focused and smaller-sized (see,
e.g., [20]). The basic idea of our constrained neighborhood is that instead of
permitting any vertex to take part in a three-cyclic-exchange operation, we
use a vertex filtering technique to constraint the three exchange vertices a, b
and c to be examined to come from three specifically identified subsets A ⊆ V ,
B ⊆ V and C ⊆ V such that the size of A, B and C is as small as possible,
and the resulting neighborhood contains the most promising solutions of the
full three-cyclic-exchange neighborhood.

When exchanging three vertices a, b and c in a cycle to generate a neighbor
solution, the computation of the move gain (Equation 3) indicates that the
quality of the neighbor solution mainly depends on the Λ value. Furthermore,
as the HTS approach progresses, the solution quality in terms of conflicting
edges becomes better and better, as for a highly refined solution, any vertex
generally fits its color class well (i.e., Λ[a][pa], Λ[b][pb] and Λ[c][pc] generally have a
very small value). Thus, the move gain crucially depends on the value of Λ[a][pb],
Λ[b][pc] and Λ[c][pa]. On the other hand, it’s quite likely that moving a vertex v to
a color class Vi with many vertices in Vi adjacent to v (i.e., Λ[v][i] takes a large
value) tends to greatly deteriorate the quality of the current solution. Thus,
to improve the computational efficiency, our constrained three-cyclic-exchange
neighborhood tries to avoid examining three-cyclic-exchange moves involving
the transfer of a vertex v to a color class Vi which have many vertices adjacent
to v.

Based on the above observation, we use the following vertex filtering rule to
determine the vertices that are included in the three special subsets A, B and

1
3

4

5

6

2

7
8

9

Color class

Color class

Color class

1 3

5

6

2

7

8

9Color class

Color class

Color class

4

Fig. 1. Illustration of a three-cyclic-exchange move. A 3-eqcoloring before the three-
-cyclic-exchange move (left), the 3-eqcoloring after the move (right).

10

C for further examination. Subset A is set to include all conflicting vertices
in the current solution s, then for each conflicting vertex a ∈ A, two vertex
subsets B and C are constructed for exchange with a as follows: Each vertex
b ∈ V whose current color class is Vpb, such that pb ̸= pa and Vpb has at most
T vertices adjacent to a (i.e., Λ[a][pb] ≤ T), is selected to be included in B,
where T is a threshold parameter set to 2 in this work. On the other hand,
any vertex c ∈ V is selected to belong to C such that c is excluded from
Vpa and has at most T adjacent vertices in Vpa (i.e., Λ[c][pa] ≤ T). Then in
our constrained cyclic-exchange neighborhood, only vertices in the subset B
and C are considered for exchange with the conflicting vertex a in order to
obtain a neighbor solution. All the neighbors of s obtained with this scheme
constitutes our constrained cyclic-exchange neighborhood.

8

Color Color Color

1

29

10

5

6

3

4

7

11

Conflict = 1

8

Color Color Color

1

29

10

5

6

3

4

7

11

Conflict = 0

Fig. 2. An example for the constrained-three-cyclic-exchange neighborhood.

To illustrate the constrained-three-cyclic-exchange neighborhood, consider a
simple 3-ECP instance shown in Figure 2. In this example, set A contains
two conflicting vertices 1 and 2. For conflicting vertex 1, vertex subsets B =
{5, 6, 7} and C = {8} are constructed. For conflicting vertex 2, vertex sub-
sets B = ∅ and C = {8} are constructed. Then the constrained-three-cyclic-
exchange neighborhood includes only three possible neighbor solutions and the
best neighbor solution provided by the constrained neighborhood is obtained
by exchanging vertices 1, 5 and 8, which leads also to a feasible conflict-free
solution.

Obviously, the size of our constrained cyclic-exchange neighborhood is typi-
cally smaller than the size of unconstrained neighborhood (n3). It’s noteworthy
that the resulting constrained cyclic-exchange neighborhood contains almost
all high-quality neighbor solutions of the whole unconstrained neighborhood,
though it may occasionally miss the best solution in the unconstrained neigh-
borhood. More importantly, it avoids the examination of most of the un-
promising moves, and significantly improves the computational efficiency of
our HTS algorithm. In Section 4.1, we will investigate the effectiveness of the
constrained three-cyclic-exchange neighborhood and show its key role to the

11

overall performance of our algorithm.

Since a three-cyclic-exchange move can be decomposed into three independent
one vertex moves, the update of the matrix Λ after a three-cyclic-exchange
move can also be achieved inO(n). When the constrained-three-cyclic-exchange
operator is applied to a feasible solution, it always generates a feasible solution.

2.5 The feasible local search phase

Algorithm 2 Feasible local search for the k-ECP

Require: Graph G = (V,E), an initial solution s0, number of colors k, the
search depth MFLS

Ensure: The best equitable k-coloring slocal best found so far, the end point
s1 of the feasible local search

1: s← s0
2: slocal best ← s0 /*records the best solution found during the FLS phase*/
3: Iteration ← 0 /*counter of consecutive iterations during which f(s) is

not improved*/
4: Initialize tabu list
5: while Iteration < MFLS do
6: Construct neighborhoods N1, N2 and N3 from s
7: Choose an overall best admissible neighbor s′ from N1 ∪ N2 ∪ N3 with

the minimum number of conflicting edges
8: s← s′

9: if f(s) = 0 then
10: Return(s) /*return the conflict-free k-eqcoloring found and the whole

procedure stops*/
11: end if
12: Update tabu list
13: if f(s) < f(slocal best) then
14: slocal best ← s
15: Iteration← 0
16: else
17: Iteration← Iteration+ 1
18: end if
19: end while
20: Return(s,slocal best)

In our algorithm, FLS is used to examine intensively the feasible search regions
so as to find a conflict-free k-coloring satisfying the equity constraint. For this
purpose, FLS restricts its search only within the feasible search space Ωf (sat-
isfying the equity constraint) and explores feasible solutions through the com-
bined use of the three complementary neighborhoodsN1 N2 andN3 introduced

12

in the last section. As indicated in Section 2.4, by applying the directional-one-
move, two-exchange and constrained-three-cyclic-exchange moves to a feasi-
ble solution, solution feasibility is always maintained. Thus, by applying these
three move operators, the search will stay in the feasible search region during
the FLS phase.

The FLS procedure is based on the general tabu search framework and its
main scheme is summarized in Algorithm 2. To make a more thorough ex-
amination in the feasible search space, our FLS procedure explores its three
neighborhoods in a combined way, i.e., at each iteration of FLS, it examines all
neighbor solutions generated by the directional-one-move, two-exchange and
constrained-three-cyclic-exchange moves, and selects the overall best admissi-
ble (non-tabu or globally improving) solution with the minimum number of
conflicting edges to generate the next solution. Such a combined neighborhood
ensures an aggressive exploration of the most relevant feasible solutions and
increases the chance of our FLS procedure to find a conflict-free solution.

To avoid short-term cycles, each time a vertex v is displaced (by the directional-
one-move, two-exchange and constrained-three-cyclic-exchange operators) from
its current color class Vi to another color class Vj, v is forbidden to move back
to Vi for the next tt (tabu tenure) iterations. To tune the tabu tenure tt, we
adopt the same hybrid tabu list management strategy proposed in [32]. To
accompany this tabu rule, an aspiration criterion is also applied which allows
a forbidden move to be selected if this move leads to a globally improving
solution, i.e., a neighbor solution better than the best solution found so far.

When the best solution cannot be improved for MFLS consecutive iterations
during the FLS phase, the search is considered to be stagnating. To direct
the search towards new regions of the search space, the search switches to the
infeasible local search phase to diversify the search.

2.6 The infeasible local search phase

When restricting the search process only to feasible solutions, some beneficial
vertex moves between color classes could be prohibited by the equity constraint
and this confines the search process to a localized portion of the search space.
In such cases, constraint relaxation is an attractive strategy. By visiting some
intermediary infeasible solutions, despite violating the equity constraint, this
strategy enables a much easier access from one promising search region to
another and helps to enhance the exploration capability of the algorithm.
Thus, when FLS is judged to be trapped in a local optimum, the algorithm
switches to the infeasible local search phase to encourage the search process
to explore new potential areas.

13

The ILS procedure (Algorithm 3) is composed of two stages: the divergent
stage that encourages the search to diverge from the current search context by
relaxing the equity constraint in a controlled manner, and the convergent stage
that progressively directs the search towards a new feasible region by means
of a tabu search procedure, which optimizes both the number of conflicting
edges and the infeasibility degree of the solution with the aim of finding a
conflict-free feasible k-coloring in the relaxed search space.

During the divergent stage, in order to drive the search to move away from
the current search context, the algorithm relaxes the equity constraint as
⌊n
k
⌋ − t ≤ |Vi| ≤ ⌈nk ⌉ + t, ∀i ∈ {1, 2, ..., k}, where t is an integer parame-

ter used to control the amount of relaxation and initially set to 1. Then under
the relaxed equity constraint, the algorithm aims to find a conflict-free k-
coloring. If a conflict-free k-coloring satisfying the relaxed equity constraint is
successfully located, the divergent stage stops. Otherwise, t is increased by one
unit and a conflict-free k-coloring is sought under the more relaxed constraint.
This process is repeated until a conflict-free k-coloring satisfying the relaxed
equity constraint is found. To locate a conflict-free k-coloring satisfying the
relaxed equity constraint, the divergent stage adopts a search procedure simi-
lar to the classic TabuCol procedure [26,19], with the only difference that our
procedure accepts a neighbor solution under the relaxed equity constraint,
while both procedures share the same neighborhood defined by moving a con-
flicting vertex from its original color class to another color class. The search
for a conflict-free k-coloring under a given relaxed equity constraint stops
when a conflict-free k-coloring is found or when a prefixed maximum number
(Miter = 25000) of iterations is attained, in which case t is increased by one
and a new conflict-free k-coloring is sought.

The rationale of using a conflict-free k-coloring as the end point of the diver-
gent stage can be explained as follows. There is a high chance that a feasi-
ble conflict-free k-coloring locates around an infeasible conflict-free k-coloring
slightly violating the equity constraint in the search space. In most cases, it
is very easy to locate a conflict-free k-coloring by slightly relaxing the equity
constraint. One exception that rarely happens is that for very few k-ECP in-
stances, when k is set to a sufficiently small value k∗ (k∗ is the best-known
minimum number of colors reported in the literature for the classic graph col-
oring problem), it may be difficult to find a conflict-free k-coloring even under
the totally relaxed equity constraint. In this case, the k-coloring with the min-
imum number of conflicting edges is returned as the output of the divergent
procedure.

Starting from the infeasible k-coloring produced by the divergent stage, the
convergent stage tries to find a feasible conflict-free k-coloring by optimizing
both the number of conflicting edges and the degree of infeasibility of the so-
lution. The proposed convergent procedure is also based on the tabu search

14

Algorithm 3 Infeasible local search for the k-ECP

Require: Graph G = (V,E), a conflicting k-coloring s1, the allowed maxi-
mum number of iterations MILS

Ensure: The best equitable k-coloring slocal best found so far, the end point
s0 of the infeasible local search

1: /* Divergent stage */
2: sc ← Divergent Procedure(s1)
3: /* Convergent stage */
4: s← sc
5: slocal best ← sc
6: Iteration← 0
7: Initialize tabu list
8: while Iteration < MILS do
9: Construct neighborhood N1 from s

10: if there exist admissible solutions in N1 with objective function value
not worse than f(s) then

11: Choose an admissible neighbor solution s′ ∈ N1 such that f(s′) ≤ f(s)
and s′ reduces the most the infeasibility degree of the current solution

12: s← s′

13: else
14: Construct neighborhoods N2 and N3 from s
15: Choose an overall best admissible neighbor s′ from N1∪N2∪N3 with

the minimum number of conflicting edges
16: s← s′

17: end if
18: if f(s) = 0 and s is a feasible solution then
19: Return(s) /*return the conflict-free k-eqcoloring found and the whole

procedure stops*/
20: end if
21: Update tabu list
22: if f(s) < f(slocal best) then
23: slocal best ← s
24: end if
25: Iteration← Iteration+ 1
26: end while
27: /* Repair procedure */
28: if s is an infeasible solution then
29: s0 ← Repair Procedure(s)
30: end if
31: Return(s0,slocal best)

15

framework and uses the same three types of move operators introduced in Sec-
tion 2.4 to explore the search space Ω composed of both feasible and infeasible
solutions. Especially, among these three types of move operators, the conver-
gent stage gives priority to the directional-one-move operator, since this move
operator can be used not only to optimize the objective function value (the
number of conflicting edges), but also to help reduce the infeasibility degree of
the solution by transferring vertices from larger color classes to smaller ones.
These three types of move operators are explored in the convergent procedure
according to the following two rules:

• Rule 1: The convergent procedure first examines all directional-one-move
moves, and identifies among them all moves with a move gain ∆ ≤ 0 in terms
of the objective function value (Eq. 1). If such moves exist, the convergent
procedure selects among them the admissible move that mostly reduces the
infeasibility degree of the solution to generate the next solution.
• Rule 2: If there is no admissible directional-one-move move satisfying Rule
1 (i.e., with ∆ ≤ 0 and reducing the infeasibility degree of the solution),
our convergent procedure then examines all the directional-one-move, two-
exchange, and constrained-three-cyclic-exchange moves, and selects among
them the best admissible (non-tabu or globally improving) move that re-
duces the conflicting edges most to generate the next solution.

By applying the selection rule that favors the directional-one-move transitions
which reduce the infeasibility degree of the solution, the search is guided to
progressively move towards feasible search regions and thus gradually increase
the chance of the algorithm to find a feasible conflict-free k-coloring during the
ILS phase. In addition, to prevent the convergent procedure from short-term
cycling, each time a vertex v is moved from its original color class Vi (by the
three types of move operators) to another color class Vj, it is forbidden to
bring v back to color class Vi for the next tt iterations. The tabu tenure tt is
tuned using the same method as described in Section 2.5.

The convergent procedure of ILS may visit both feasible and infeasible so-
lutions. However, its ultimate objective is to find a feasible conflict-free k-
coloring. To achieve this, at each iteration of the convergent procedure, we
check if the current solution s is a feasible solution with f(s) = 0. This can
be done easily in O(k) by verifying that the cardinality of each color class of s
satisfies the equity constraint (i.e., ⌊||Vi|− n

k
|⌋ = 0, ∀i ∈ {1, ..., k}, ⌊.⌋ denotes

the integer part of a positive real number). The convergent procedure stops
when a feasible conflict-free k-coloring is found or when an allowed maximum
number of iterations MILS is reached. In case the convergent procedure fails to
find a feasible conflict-free k-coloring during the ILS phase, the final solution
of the convergent procedure is a highly refined solution with few conflicting
edges and should be very close to the boundaries of the feasible region relative
to the equity constraint. This solution can then be used as a very promising

16

starting solution for the next round of the feasible local search procedure. Be-
fore the algorithm switches back to the FLS phase, a simple repair mechanism
is invoked to transform this solution into a feasible solution (relative to the eq-
uity constraint). The repair mechanism removes vertices (selected randomly)
from color classes for which |Vi| > ⌈nk ⌉ and adds these vertices to color classes
for which |Vi| < ⌊nk ⌋. The process continues until the equity constraint is met.

3 Computational Experiments

This section is dedicated to an experimental assessment of the proposed HTS
algorithm. For this purpose, we show computational results on a set of 73
benchmark instances commonly used in the literature and make comparisons
with the current best performing heuristic approaches.

3.1 Problem instances and experimental protocol

The set of 73 commonly used benchmark instances were initially proposed for
the conventional graph coloring problem. They were first collected for the “Sec-
ond DIMACS Implementation Challenge on Maximum Clique, Graph Color-
ing, and Satisfiability” and later extended for the series of competitions on
“Graph Coloring and its Generalizations” (COLOR02/03/04 competitions).
These instances are available at http://mat.gsia.cmu.edu/COLOR/instances.html
and http://www.cs.hbg.psu.edu/txn131/graphcoloring.html.

Our HTS algorithm was coded in C++ 1 and compiled by the g++ compiler
with the ‘-O2’ option. The experiments were conducted on a computer with
an Intel Xeon E5440 processor (2.83 GHz CPU and 2 GB RAM) running the
Linux operating system. Note that the HTS algorithm was run on the same
computing platform as BITS [32].

To assess the performance of the algorithm, we report computational results
using the same two stopping criteria used in [32]. The first stopping criterion
is a short time limit of 3600 seconds per instance and per run, which was also
previously used in [37]. Under this stopping criterion, we ran the HTS algo-
rithm only one time to solve each instance in order to make a fair comparison
with the results reported in [32,37]. The second stopping criterion is a long
time limit of 104 seconds for the instances with n ≤ 500 or 2 × 104 seconds
for larger instances with n > 500. Such time limits were typically used in the

1 The source code will be publicly available at: http://www.info.univ-
angers.fr/ hao/eqcoloring.html.

17

Table 1
Settings of important parameters.

Parameters Section Description Values

T 2.4 Threshold value for subset construction of the constrained
cyclic exchange neighborhood

2

MFLS 2.5 Iterations of feasible local search phase 20000
MILS 2.6 Iterations of infeasible local search phase 5000
tt 2.5, 2.6 Tabu tenure management factor 10
m 2 Search depth of the binary search procedure 4

literature for testing graph coloring algorithms and enable us to better observe
the behavior of the HTS algorithm when more time is available. For the long
time criterion, we ran our HTS algorithm 20 times for each instance like in
[32].

3.2 Parameter settings

0 1 2 3 4

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

T

10000 15000 20000 25000 30000

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

M
FLS

1000 3000 5000 7000 9000

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

M
ILS

Fig. 3. Box and whisker plots corresponding to different values of T (left), MFLS

(middle) and MILS (right) in terms of solution quality. X-axis indicates the tested
parameter values and Y-axis shows the performance.

Like other heuristic approaches for the GCP and the ECP, the proposed HTS
algorithm has a number of parameters to be tuned, the parameter settings used
in our experiments are summarized in Table 1. Three main parameters are the
search depth of FLS (MFLS), the allowed maximum number of iterations for
ILS (MILS) and the threshold value for subset construction of the constrained
cyclic exchange neighborhood. To determine these parameter values, we test
for each parameter a set of potential values with the other parameters fixed
to their default values from Table 1. We run our HTS algorithms 10 times
under the long time limit on a selection of 21 instances. The average objective
value over the 10 runs are considered for each instance and the corresponding
parameter. Specifically, we tested values for T in the range [0..4], MFLS in
the range [10000..30000] and MILS in the range [1000..9000]. To compare the
results in terms of solution quality, we use the popular box and whisker plots.
Fig. 3 shows the box and whisker plots obtained with these three parameters.
The left sub-figure shows the results for different T values while the middle
sub-figure shows the results for different MFLS values and the right sub-figure
indicates the results for different MILS values. The X-axis in each sub-figure
indicates the tested parameter values and the Y-axis shows the solution quality
expressed as the percentage deviation of the obtained results from the best-

18

known results reported in the literature. From Fig. 3, we observe that the
setting of T = 2, MFLS = 20000 and MILS = 5000 globally leads to the best
results. In addition to these three important parameters, HTS requires also
several other parameters like the search depth of the binary search procedure
and the tabu tenure for FLS and ILS. For these two parameters, we adopt the
same values as recommended in [32].

3.3 Computational results and comparisons

Table 2 summarizes the computational statistics of our HTS algorithm ob-
tained on the set of 73 benchmark instances. Columns 1–2 present the char-
acteristics of the tested graphs, including the name of the graph and the
number of vertices in the graph. Columns LB and UB give the current best-
known lower and upper bounds of the ECP reported in the literature, which
were achieved by some very recent algorithms or CPLEX. Column 5 indicates
the current best-known results (kpre) reported in the literature. The results
of our HTS algorithm with short time condition (3600 seconds per run for
each instance) are presented in column 6 (k1). Columns 7–13 present detailed
computational results of our HTS algorithm under the long time condition:
the smallest number of colors (kbest) for which our HTS algorithm obtains
a k-eqcoloring over the 20 independent runs, the worst results (kworst), the
average results (kavg), the standard deviation (kstd), the success rate (SR),
the average computation time in seconds (t(s)) over the runs which found a
k-eqcoloring, and the difference (Diff) in number of colors between our best
results (column kbest) and the current best-known results ever reported in the
literature (column kpre) (a negative value indicates an improved result).

From Table 2, we observe that the results obtained by our HTS algorithm
(column kbest) are highly competitive compared to the current best-known re-
sults reported in the literature (column kpre). HTS improves the best-known
solutions for 15 instances (new upper bounds) and matches the best-known re-
sults for 57 instances. Only for 1 instance (DSJC500.9), HTS reports a slightly
worse result (using one more color) relative to the current best-known result.
Especially, for several classic DIMACS instances (DSJC1000.5, flat1000 50 0,
flat1000 60 0, flat1000 76 0 and C2000.5), which are frequently used to test
graph coloring algorithms, HTS can significantly improve the best-known re-
sults by reducing the number of used colors by more than 6 units. Further-
more, for all 26 instances with their best lower bounds equaling their best
upper bounds, HTS can reach their optimum solutions. Finally, for 57 out of
the 73 instances, our HTS algorithm can attain its results with a standard
deviation of 0 while for the remaining 16 instances, it achieves a very small
standard deviation, which further confirms the robustness of the algorithm.

19

Table 2
Performance of the proposed HTS algorithm on the 73 benchmark instances. A value
in bold indicates an improved result obtained by HTS compared to the previous best
upper bound.

HTS
Instance N LB UB kpre k1 kbest kworst kavg kstd SR t(s) Diff

DSJC125.1 125 5 5 5 5 5 5 5.00 0.00 20/20 15.73 0
DSJC125.5 125 9 17 17 17 17 17 17.00 0.00 20/20 563.44 0
DSJC125.9 125 43 44 44 44 44 44 44.00 0.00 20/20 0.30 0
DSJC250.1 250 5 8 8 8 8 8 8.00 0.00 20/20 426.50 0
DSJC250.5 250 12 29 29 29 29 29 29.00 0.00 20/20 4584.46 0
DSJC250.9 250 63 72 72 72 72 72 72.00 0.00 20/20 1835.05 0
DSJC500.1 500 5 13 13 13 13 13 13.00 0.00 20/20 147.54 0
DSJC500.5 500 13 56 56 52 52 52 52.00 0.00 20/20 2098.20 -4
DSJC500.9 500 101 128 128 130 129 130 129.65 0.48 7/20 8925.67 1
DSJR500.1 500 12 12 12 12 12 12 12.00 0.00 20/20 2.53 0
DSJR500.5 500 120 126 126 125 125 126 125.65 0.48 7/20 8179.27 -1
DSJC1000.1 1000 5 21 21 22 21 22 21.95 0.22 1/20 4809.68 0
DSJC1000.5 1000 15 101 101 97 95 97 95.90 0.70 6/20 13394.64 -6
DSJC1000.9 1000 126 252 252 251 251 251 251.00 0.00 20/20 3563.76 -1

R125.1 125 - 5 5 5 5 5 5.00 0.00 20/20 0.06 0
R125.5 125 - 36 36 36 36 36 36.00 0.00 20/20 3.41 0
R250.1 250 - 8 8 8 8 8 8.00 0.00 20/20 0.11 0
R250.5 250 - 66 66 66 65 66 65.90 0.32 2/20 9777.74 -1
R1000.1 1000 - 20 20 20 20 20 20.00 0.00 20/20 678.04 0
R1000.5 1000 - 250 250 255 249 250 249.10 0.30 19/20 17816.84 -1
le450 5a 450 5 5 5 5 5 5 5.00 0.00 20/20 332.37 0
le450 5b 450 5 5 5 5 5 5 5.00 0.00 20/20 363.68 0
le450 5c 450 - 5 5 5 5 5 5.00 0.00 20/20 143.03 0
le450 5d 450 5 5 5 5 5 5 5.00 0.00 20/20 373.07 0
le450 15a 450 15 15 15 15 15 15 15.00 0.00 20/20 17.18 0
le450 15b 450 15 15 15 15 15 15 15.00 0.00 20/20 15.95 0
le450 15c 450 - 15 15 15 15 15 15.00 0.00 20/20 95.72 0
le450 15d 450 15 15 15 15 15 15 15.00 0.00 20/20 58.14 0
le450 25a 450 25 25 25 25 25 25 25.00 0.00 20/20 4.76 0
le450 25b 450 25 25 25 25 25 25 25.00 0.00 20/20 7.26 0
le450 25c 450 - 26 26 26 26 26 26.00 0.00 20/20 11.75 0
le450 25d 450 25 26 26 26 26 26 26.00 0.00 20/20 6.29 0
wap01a 2368 41 42 42 42 42 42 42.00 0.00 20/20 700.41 0
wap02a 2464 40 41 41 41 41 41 41.00 0.00 20/20 2232.87 0
wap03a 4730 40 45 45 45 45 46 45.10 0.30 18/20 6150.34 0
wap04a 5231 - 44 44 45 44 45 44.40 0.49 12/20 12845.28 0
wap05a 905 - 50 50 50 50 50 50.00 0.00 20/20 0.18 0
wap06a 947 - 41 41 41 41 41 41.00 0.00 20/20 1206.07 0
wap07a 1809 - 42 42 42 42 43 42.40 0.49 12/20 2591.23 0
wap08a 1870 - 42 42 42 42 43 42.70 0.46 6/20 3801.03 0

flat300 28 0 300 11 34 34 33 33 34 33.00 0.71 20/20 3814.24 -1
flat1000 50 0 1000 - 101 101 97 92 95 93.30 0.64 1/20 18034.58 -9
flat1000 60 0 1000 - 101 101 100 94 96 94.70 0.64 8/20 16263.51 -7
flat1000 76 0 1000 14 102 102 97 93 95 93.90 0.62 5/20 14306.60 -9

latin square 10 900 90 113 113 112 107 111 108.50 1.07 3/20 18054.74 -6
C2000.5 2000 - 201 201 201 188 193 190.35 1.24 1/20 19915.04 -13
C2000.9 2000 - 502 502 501 501 501 501.00 0.00 20/20 3952.28 -1
mulsol.i.1 197 49 49 49 49 49 49 49.00 0.00 20/20 0.53 0
mulsol.i.2 188 34 36 36 36 36 36 36.00 0.00 20/20 15.22 0
fpsol2.i.1 496 65 65 65 65 65 65 65.00 0.00 20/20 12.61 0
fpsol2.i.2 451 47 47 47 47 47 47 47.00 0.00 20/20 6.64 0
fpsol2.i.3 425 55 55 55 55 55 55 55.00 0.00 20/20 3.77 0
inithx.i.1 864 54 54 54 54 54 54 54.00 0.00 20/20 47.31 0
inithx.i.2 645 30 36 36 35 35 35 35.00 0.00 20/20 207.41 -1
inithx.i.3 621 - 37 37 36 36 36 36.00 0.00 20/20 5256.11 -1
zeroin.i.1 211 49 49 49 49 49 49 49.00 0.00 20/20 2.24 0
zeroin.i.2 211 36 36 36 36 36 36 36.00 0.00 20/20 0.70 0
zeroin.i.3 206 36 36 36 36 36 36 36.00 0.00 20/20 1.14 0
myciel6 95 7 7 7 7 7 7 7.00 0.00 20/20 0.01 0
myciel7 191 8 8 8 8 8 8 8.00 0.00 20/20 0.17 0

4-FullIns 3 114 7 7 7 7 7 7 7.00 0.00 20/20 0.01 0
4-FullIns 4 690 6 8 8 8 8 8 8.00 0.00 20/20 3.98 0
4-FullIns 5 4146 6 9 9 9 9 10 9.30 0.46 14/20 57.67 0

1-Insertions 6 607 3 7 7 7 7 7 7.00 0.00 20/20 0.38 0
2-Insertions 5 597 3 6 6 6 6 6 6.00 0.00 20/20 0.96 0
3-Insertions 5 1406 3 6 6 6 6 6 6.00 0.00 20/20 21.94 0

school1 385 15 15 15 15 15 15 15.00 0.00 20/20 0.72 0
school1 nsh 352 14 14 14 14 14 14 14.00 0.00 20/20 56.10 0
qg.order40 1600 40 40 40 40 40 40 40.00 0.00 20/20 4291.18 0
qg.order60 3600 60 60 60 60 60 60 60.00 0.00 20/20 64.34 0

ash331GPIA 662 4 4 4 4 4 4 4.00 0.00 20/20 5.39 0
ash608GPIA 1216 3 4 4 4 4 4 4.00 0.00 20/20 854.45 0
ash958GPIA 1916 3 4 4 4 4 4 4.00 0.00 20/20 11.95 0

20

Table 3
Comparative results with two heuristic approaches

Instance Short time criterion Long time criterion
TabuEqCol BITS HTS BITS HTS

kbest kavg SR t(s) kbest kavg SR t(s)

DSJC125.1 5 5 5 5 5.00 20/20 0.96 5 5.00 20/20 15.73
DSJC125.5 18 17 17 17 17.50 10/20 5169.38 17 17.00 20/20 563.44
DSJC125.9 45 44 44 44 44.00 20/20 0.16 44 44.00 20/20 0.30
DSJC250.1 8 8 8 8 8.00 20/20 5.50 8 8.00 20/20 426.50
DSJC250.5 32 32 29 30 31.90 1/20 3265.63 29 29.00 20/20 4584.46
DSJC250.9 83 72 72 72 72.00 20/20 1179.92 72 72.00 20/20 1835.05
DSJC500.1 13 13 13 13 13.00 20/20 6.96 13 13.00 20/20 147.54
DSJC500.5 63 57 52 56 56.95 1/20 484.60 52 52.00 20/20 2098.20
DSJC500.9 182 130 130 129 129.90 2/20 3556.53 129 129.65 7/20 8925.67
DSJR500.1 12 12 12 12 12.00 20/20 0.58 12 12.00 20/20 2.53
DSJR500.5 133 126 125 126 126.30 14/20 3947.61 125 125.65 7/20 8179.27
DSJC1000.1 22 22 22 21 21.95 1/20 3605.49 21 21.95 1/20 4809.68
DSJC1000.5 112 112 97 103 105.10 3/20 18078.94 95 95.9 6/20 13394.64
DSJC1000.9 329 254 251 252 253.30 1/20 4064.65 251 251.00 20/20 3563.76

R125.1 - 5 5 5 5.00 20/20 0.01 5 5.00 20/20 0.06
R125.5 - 36 36 36 36.00 20/20 0.39 36 36.00 20/20 3.41
R250.1 - 8 8 8 8.00 20/20 0.01 8 8.00 20/20 0.11
R250.5 - 67 66 66 66.65 7/20 6275.08 65 65.90 2/20 9777.74
R1000.1 - 20 20 20 20.00 20/20 3.09 20 20.00 20/20 678.04
R1000.5 - 269 255 250 250.40 12/20 10723.29 249 249.10 19/20 17816.84
le450 5a - 5 5 5 5.00 20/20 45.86 5 5.00 20/20 332.37
le450 5b 7 5 5 5 5.00 20/20 74.43 5 5.00 20/20 363.68
le450 5c - 5 5 5 5.00 20/20 1877.73 5 5.00 20/20 143.03
le450 5d 8 5 5 5 5.00 20/20 2231.59 5 5.00 20/20 373.07
le450 15a - 15 15 15 15.00 20/20 4.44 15 15.00 20/20 17.18
le450 15b 15 15 15 15 15.00 20/20 4.16 15 15.00 20/20 15.95
le450 15c - 15 15 15 15.10 18/20 410.35 15 15.00 20/20 95.72
le450 15d 16 15 15 15 15.70 6/20 629.83 15 15.00 20/20 58.14
le450 25a - 25 25 25 25.00 20/20 0.72 25 25.00 20/20 4.76
le450 25b 25 25 25 25 25.00 20/20 0.78 25 25.00 20/20 7.26
le450 25c - 26 26 26 26.00 20/20 16.50 26 26.00 20/20 11.75
le450 25d 27 26 26 26 26.00 20/20 14.08 26 26.00 20/20 6.29
wap01a 46 43 42 42 42.60 8/20 4183.29 42 42.00 20/20 700.41
wap02a 44 42 41 41 41.80 4/20 6829.03 41 41.00 20/20 2232.87
wap03a 50 46 45 45 45.05 19/20 11267.27 45 45.10 18/20 6150.34
wap04a - 46 45 44 44.15 17/20 11345.30 44 44.40 12/20 12845.28
wap05a - 50 50 50 50.00 20/20 8.46 50 50.00 20/20 0.18
wap06a - 42 41 41 41.70 6/20 6892.09 41 41.00 20/20 1206.07
wap07a - 43 42 43 43.05 19/20 718.25 42 42.40 12/20 2591.23
wap08a - 43 42 43 43.05 19/20 951.85 42 42.70 6/20 3801.03

flat300 28 0 36 35 33 34 34.70 6/20 4407.62 33 33.00 20/20 3814.24
flat1000 50 0 - 112 97 101 102.80 1/20 9206.28 92 93.30 1/20 18034.58
flat1000 60 0 - 112 100 102 102.90 5/20 10201.53 94 94.70 8/20 16263.51
flat1000 76 0 112 112 97 102 103.40 3/20 13063.39 93 93.90 5/20 14306.60

latin square 10 130 129 112 115 120.00 1/20 17859.13 107 108.50 3/20 18054.74
C2000.5 - 202 201 201 201.65 7/20 4808.96 188 190.35 1/20 19915.04
C2000.9 - 504 501 502 502.45 11/20 7772.04 501 501.00 20/20 3952.28
mulsol.i.1 50 49 49 49 49.00 20/20 14.82 49 49.00 20/20 0.53
mulsol.i.2 48 36 36 36 36.35 13/20 3633.61 36 36.00 20/20 15.22
fpsol2.i.1 78 65 65 65 65.00 20/20 830.30 65 65.00 20/20 12.61
fpsol2.i.2 60 47 47 47 47.00 20/20 976.07 47 47.00 20/20 6.64
fpsol2.i.3 79 55 55 55 55.00 20/20 729.47 55 55.00 20/20 3.77
inithx.i.1 66 54 54 54 54.00 20/20 1468.27 54 54.00 20/20 47.31
inithx.i.2 93 36 35 36 36.35 13/20 12412.83 35 35.00 20/20 207.41
inithx.i.3 - 38 36 37 37.45 11/20 9214.61 36 36.00 20/20 5256.11
zeroin.i.1 51 49 49 49 49.00 20/20 1367.14 49 49.00 20/20 2.24
zeroin.i.2 51 36 36 36 36.00 20/20 96.99 36 36.00 20/20 0.70
zeroin.i.3 49 36 36 36 36.00 20/20 109.11 36 36.00 20/20 1.14
myciel6 7 7 7 7 7.00 20/20 0.00 7 7.00 20/20 0.01
myciel7 8 8 8 8 8.00 20/20 0.02 8 8.00 20/20 0.17

4-FullIns 3 - 7 7 7 7.00 20/20 0.00 7 7.00 20/20 0.01
4-FullIns 4 8 8 8 8 8.00 20/20 0.23 8 8.00 20/20 3.98
4-FullIns 5 9 9 9 9 9.00 20/20 54.49 9 9.30 14/20 57.67

1-Insertions 6 7 7 7 7 7.00 20/20 0.34 7 7.00 20/20 0.38
2-Insertions 5 6 6 6 6 6.00 20/20 0.11 6 6.00 20/20 0.96
3-Insertions 5 6 6 6 6 6.00 20/20 0.57 6 6.00 20/20 21.94

school1 15 15 15 15 15.00 20/20 1.30 15 15.00 20/20 0.72
school1 nsh 14 14 14 14 14.00 20/20 2.63 14 14.00 20/20 56.10
qg.order40 40 40 40 40 40.00 20/20 4.73 40 40.00 20/20 4291.18
qg.order60 60 60 60 60 60.00 20/20 21.57 60 60.00 20/20 64.34

ash331GPIA 4 4 4 4 4.00 20/20 2.02 4 4.00 20/20 5.39
ash608GPIA 4 4 4 4 4.00 20/20 0.50 4 4.00 20/20 854.45
ash958GPIA 4 4 4 4 4.00 20/20 23.31 4 4.00 20/20 11.95

3.4 Comparison with state-of-the-art algorithms

In order to show the relative effectiveness of the proposed algorithm for the
ECP, we further compare the algorithm with the two most recent state-of-

21

art algorithms from the literature: TabuEqCol [37] and BITS [32]. The main
comparison criterion is the quality of the solutions found, i.e., the number of
used colors for which an algorithm obtains a k-eqcoloring.

Table 3 summarizes the computational results of the proposed algorithm in
comparison with the two reference algorithms under both the short time cri-
terion and the long time criterion. The experimental platforms used by the
reference algorithms are as follows.

• TabuEqCol was run on an Intel i5 CPU 750@2.67Ghz with Ubuntu Linux
O.S. and Intel C++ Compiler. In [37], TabuEqCol only reported its results
under the short time criterion.
• BITS was run on a Xeon E5440 with 2.83 GHz with 2 GB RAM and re-
ported its results under both the short time criterion and the long time
criterion. Note that both BITS and our HTS algorithm were run on the
same computing platform.

When comparing these three algorithms under the short time criterion, we
observe that our HTS algorithm competes very favorably with the TabuEqCol
algorithm, indeed, for the 50 graphs where TabuEqCol reported its results,
our HTS algorithm is able to deliver a better result for 29 instances, while
achieving the same result for the remaining 21 instances. When comparing
HTS with BITS, we can also observe that HTS is highly competitive with BITS
under the short time criterion. Over all the 73 instances tested, the quality of
solutions obtained by HTS matches or exceeds that of solutions obtained by
BITS. In addition, HTS obtains solutions better than those found by BITS
in 23 cases. When applying the statistical Wilcoxon test with a significance
level of 0.05 for pairwise comparisons, the resulting p-values of 2.629e-6 for
HTS v.s. TabuEqCol, and 2.25e-5 for HTS v.s. BITS show a clear dominance
of HTS over the reference algorithms.

When comparing with the results of BITS under the long time criterion, one
observes that the results are once again in favor of our HTS algorithm. For
18 out of the 73 instances, HTS finds better solutions than BITS. For the
remaining 55 instances, both algorithms achieve the same minimal kbest value.
Furthermore, for the 55 instances with the same minimal kbest value, our HTS
algorithm is able to reach better average results than BITS for 8 instances
while the reverse is true only for 3 instances. The comparative results between
HTS and BITS also comply with the no free lunch (NFL) theorem [48] which
states that no algorithm will always be the most effective considering all the
possible problems. Finally, the Wilcoxon test outcomes indicate that the differ-
ences between HTS and BITS are statistically significant (p-value=0.000142)
in terms of the best results achieved. Thus we conclude that our HTS algo-
rithm dominates BITS.

22

To complement these comparisons, we also provide the convergence graphs
to observe the running behavior of these three comparative algorithms. The
convergence graph is given by the function: i → k where i is the number of
iterations and k is the minimal number of colors achieved at iteration i. The
convergence graph is a natural way to observe the evolution of the objective
value during the search process. In Fig. 4 we show the convergence graphs of
TabuEqCol, BITS and HTS on four selected instances. From Fig. 4, we first
observe that HTS always attains the best performance by reaching a smaller
k. Even if the minimal number of colors of these three algorithms decreases
sharply at the beginning, TabuEqCol and BITS soon get trapped in local
optima as they converge early for these four tested problem instances. On the
other hand, HTS is able to continue its search and find improved solutions
with the help of its feasible and infeasible local searches.

50 100 150 200

Iteration(×103)

95

100

105

110

115

120

125

130

C
ol

or

DSJC1000.5

HTS
BITS
TabuEqCol

50 100 150 200

Iteration(×103)

95

100

105

110

115

120

125

130

C
ol

or

flat1000_50_0

HTS
BITS
TabuEqCol

50 100 150 200

Iteration(×103)

110

115

120

125

130

135

140

C
ol

or

latin_square_10

HTS
BITS
TabuEqCol

50 100 150 200

Iteration(×103)

185

190

195

200

205

210

215

220

225

230

235

240

C
ol

or

C2000.5

HTS
BITS
TabuEqCol

Fig. 4. Convergence graphs of TabuEqCol, BITS and HTS on four instances.

4 Analysis of HTS

In this section, we carry out additional analyses to gain a deeper understanding
of the underlying mechanisms of the proposed algorithm.

23

Table 4
The influence of the constrained cyclic exchange neighborhood on 21 representative
instances

FLS+CCEN FLS-CCEN
Instance kbest kworst kavg kstd SR t(s) kbest kworst kavg kstd SR t(s)

DSJC500.5 52 52 52.00 0.00 20/20 1464.92 57 57 57.00 0.00 20/20 33.87
DSJR500.5 125 126 125.85 0.36 3/20 4407.02 126 127 126.95 0.22 1/20 108.64
DSJC1000.5 98 101 100.10 1.09 1/20 17967.18 112 112 112.00 0.00 20/20 27.70
DSJC1000.9 251 252 251.05 0.22 19/20 7371.64 254 255 254.35 0.48 13/20 333.24

R250.5 66 66 66.00 0.00 20/20 288.00 66 67 66.25 0.43 15/20 28.83
R1000.5 249 250 249.35 0.48 13/20 15019.77 252 252 252.00 0.00 20/20 210.40
le450 5a 5 7 6.20 0.98 8/20 1250.98 5 5 5.00 0.00 20/20 3.18
le450 5b 5 7 6.10 0.99 9/20 3418.52 5 5 5.00 0.00 20/20 79.97
le450 5c 7 7 7.00 0.00 20/20 61.31 7 7 7.00 0.00 20/20 0.48
le450 5d 7 7 7.00 0.00 20/20 59.00 7 7 7.00 0.00 20/20 1.12
le450 15a 15 15 15.00 0.00 20/20 25.81 15 15 15.00 0.00 20/20 18.18
le450 15b 15 15 15.00 0.00 20/20 29.75 15 15 15.00 0.00 20/20 12.70
le450 15c 15 15 15.00 0.00 20/20 369.59 15 15 15.00 0.00 20/20 274.32
le450 15d 15 16 15.75 0.43 5/20 588.27 15 16 15.25 0.43 15/20 606.97

flat300 28 0 33 34 33.95 0.22 1/20 1348.58 35 36 35.15 0.36 17/20 188.73
flat1000 50 0 93 94 93.85 0.36 3/20 12449.40 112 112 112.00 0.00 20/20 5.88
flat1000 60 0 94 96 94.70 0.71 9/20 11309.91 112 112 112.00 0.00 20/20 2.69
flat1000 76 0 94 96 94.40 0.58 13/20 10254.05 112 112 112.00 0.00 20/20 6.48

latin square 10 109 113 111.05 1.12 1/20 14768.21 130 130 130.00 0.00 20/20 84.44
C2000.5 189 195 191.3 1.42 2/20 19428.78 202 202 202.00 0.00 20/20 154.40
C2000.9 501 501 501.00 0.00 20/20 2054.21 503 504 503.75 0.43 5/20 949.54

4.1 Effectiveness of the cyclic exchange neighborhood

The neighborhood is a critical element that affects the efficacy of a local search
procedure. Our HTS algorithm relies on three dedicated neighborhoods which
are induced by the directional-one-move, two-exchange and constrained-three-
cyclic-exchange operators while previous algorithms like TabuEqCol and BITS
only employ the directional-one-move and two-exchange operators to gener-
ate neighbor solutions. In this section, we investigate the critical role played
by the constrained-three-cyclic-exchange neighborhood in boosting the over-
all performance of our algorithm. For this purpose, we compared two neigh-
borhood exploring strategies, the first one jointly uses these three dedicated
neighborhoods while the second strategy excludes the constrained-three-cyclic-
exchange neighborhood. These two strategies were tested under the framework
of our feasible local search procedure in order to highlight the role of the
neighborhood. We summarize in Table 4 the comparative results between the
two versions of our FLS procedure with and without the constrained-three-
cyclic-exchange neighborhood (denoted by FLS+CCEN and FLS-CCEN re-
spectively). We ran both algorithms under the long time stop criterion on a
set of 21 representative instances, which were frequently used in the literature
to test graph coloring algorithms.

Table 4 shows that removing the constrained-three-cyclic-exchange neighbor-
hood significantly sacrifices the search power of FLS. Specifically, FLS+CCEN
outperforms FLS-CCEN for 12 out of the 21 tested instances in terms of the
best results, and matches FLS-CCEN for the remaining 9 instances. Especially,
for the 9 instances with more than 900 vertices, FLS+CCEN can significantly
improve on the results of FLS-CCEN by largely reducing the number of used
colors. In terms of the average results and standard deviations, even if FLS-
CCEN shows slightly better standard deviations, FLS+CCEN has a better
average value than FLS-CCEN for 13 out of the 21 tested instances while the

24

reverse is true only for 4 instances. In addition, the Wilcoxon test outcomes in
terms of the best solution values reveal a significant difference with the p-value
= 0.002497 between these two versions of our FLS procedure, further confirm-
ing our conclusion that the cyclic exchange neighborhood makes a significant
contribution to the overall performance of the algorithm.

4.2 Effectiveness of the combined use of feasible and infeasible local searches

Compared with previous approaches like TabuEqCol [37] and BITS [32] where
the equity constraint is strictly maintained during the search process, one
salient feature of our approach is its hybrid scheme combining feasible and
infeasible local searches. To evaluate the merit of this hybrid scheme, we com-
pare the performance of our HTS algorithm with its two underlying local
search components, i.e., the feasible local search procedure and the infeasible
local search procedure.

Table 5 summarizes the computational results of these 3 algorithms under the
long time criterion on the 21 selected instances. From Table 5, it can be ob-
served that HTS shows an overall better performance than its two underlying
FLS and ILS local search procedures. Indeed, when comparing HTS against
FLS, we notice that they reach the same minimal k value for 13 graphs. For
the other 8 graphs, HTS finds better solutions than FLS. When it comes to
comparing HTS and ILS, the results are once again in favor of HTS because
HTS improves on the results of ILS for 17 out of 21 cases. Moreover, HTS
usually achieves a significant better average value than FLS and ILS even if
these tree algorithms have a comparable standard deviations.

When applying the Wilcoxon test to check the statistical differences between
HTS and its two underlying algorithms FLS and ILS in terms of the best solu-
tion values, we obtain p-values of 0.01264 for HTS v.s. FLS, and 0.000316 for
HTS v.s ILS, indicating that the differences between HTS and its two under-
lying local search methods are statistically significant. The above observation
indicates that HTS reaches a better performance than its two underlying lo-
cal search components which confirms the usefulness of the hybrid scheme
integrating both the feasible and infeasible local searches into the search pro-
cedure. Finally, we also notice that even if FLS and ILS perform worse than
HTS, their results remain competitive with respect to the other two reference
approaches TabuEqCol [37] and BITS [32].

25

T
ab

le
5.

C
om

p
ar
is
on

of
re
su
lt
s
am

on
g
H
T
S
,
F
L
S
an

d
IL
S

H
T
S

F
L
S

IL
S

In
st
a
n
c
e

k
b
e
s
t

k
w

o
r
s
t

k
a
v
g

k
s
t
d

S
R

t(
s)

k
b
e
s
t

k
w

o
r
s
t

k
a
v
g

k
s
t
d

S
R

t(
s)

k
b
e
s
t

k
w

o
r
s
t

k
a
v
g

k
s
t
d

S
R

t(
s)

D
S
J
C
5
0
0
.5

5
2

5
2

5
2
.0
0

0
.0
0

2
0
/
2
0

2
0
9
8
.2
0

5
2

5
2

5
2
.0
0

0
.0
0

2
0
/
2
0

1
4
6
4
.9
2

5
7

5
7

5
7
.0
0

0
.0
0

2
0
/
2
0

4
.8
1

D
S
J
R
5
0
0
.5

1
2
5

1
2
6

1
2
5
.6
5

0
.4
8

7
/
2
0

8
1
7
9
.2
7

1
2
5

1
2
6

1
2
5
.8
5

0
.3
6

3
/
2
0

4
4
0
7
.0
2

1
2
7

1
2
8

1
2
7
.2
0

0
.4
0

1
6
/
2
0

1
5
1
.0
3

D
S
J
C
1
0
0
0
.5

9
5

9
7

9
5
.9
0

0
.7
0

6
/
2
0

1
3
3
9
4
.6
4

9
8

1
0
1

1
0
0
.1
0

1
.0
9

1
/
2
0

1
7
9
6
7
.1
8

1
0
4

1
0
5

1
0
4
.0
5

0
.2
2

1
9
/
2
0

1
0
1
.7
1

D
S
J
C
1
0
0
0
.9

2
5
1

2
5
1

2
5
1
.0
0

0
.0
0

2
0
/
2
0

3
5
6
3
.7
6

2
5
1

2
5
2

2
5
1
.0
5

0
.2
2

1
9
/
2
0

7
3
7
1
.6
4

2
6
0

2
6
4

2
6
1
.8
5

0
.9
1

1
/
2
0

5
8
.5
7

R
2
5
0
.5

6
5

6
6

6
5
.9
0

0
.3
2

2
/
2
0

9
7
7
7
.7
4

6
6

6
6

6
6
.0
0

0
.0
0

2
0
/
2
0

2
8
8
.0
0

6
6

6
6

6
6
.0
0

0
.0
0

2
0
/
2
0

9
.0
4

R
1
0
0
0
.5

2
4
9

2
5
0

2
4
9
.1
0

0
.3
0

1
9
/
2
0

1
7
8
1
6
.8
4

2
4
9

2
5
0

2
4
9
.3
5

0
.4
8

1
3
/
2
0

1
5
0
1
9
.7
7

2
5
1

2
5
3

2
5
2
.3
5

0
.5
7

1
/
2
0

1
1
6
2
.0
9

le
4
5
0

5
a

5
5

5
.0
0

0
.0
0

2
0
/
2
0

3
3
2
.3
7

5
7

6
.2
0

0
.9
8

8
/
2
0

1
2
5
0
.9
8

5
5

5
.0
0

0
.0
0

2
0
/
2
0

0
.0
9

le
4
5
0

5
b

5
5

5
.0
0

0
.0
0

2
0
/
2
0

3
6
3
.6
8

5
7

6
.1
0

0
.9
9

9
/
2
0

3
4
1
8
.5
2

5
5

5
.0
0

0
.0
0

2
0
/
2
0

0
.1
0

le
4
5
0

5
c

5
5

5
.0
0

0
.0
0

2
0
/
2
0

1
4
3
.0
3

7
7

7
.0
0

0
.0
0

2
0
/
2
0

6
1
.3
1

5
5

5
.0
0

0
.0
0

2
0
/
2
0

0
.1
6

le
4
5
0

5
d

5
5

5
.0
0

0
.0
0

2
0
/
2
0

3
7
3
.0
7

7
7

7
.0
0

0
.0
0

2
0
/
2
0

5
9
.0
0

5
5

5
.0
0

0
.0
0

2
0
/
2
0

0
.1
4

le
4
5
0

1
5
a

1
5

1
5

1
5
.0
0

0
.0
0

2
0
/
2
0

1
7
.1
8

1
5

1
5

1
5
.0
0

0
.0
0

2
0
/
2
0

2
5
.8
1

1
6

1
6

1
6
.0
0

0
.0
0

2
0
/
2
0

0
.2
0

le
4
5
0

1
5
b

1
5

1
5

1
5
.0
0

0
.0
0

2
0
/
2
0

1
5
.9
5

1
5

1
5

1
5
.0
0

0
.0
0

2
0
/
2
0

2
9
.7
5

1
6

1
6

1
6
.0
0

0
.0
0

2
0
/
2
0

0
.1
2

le
4
5
0

1
5
c

1
5

1
5

1
5
.0
0

0
.0
0

2
0
/
2
0

9
5
.7
2

1
5

1
5

1
5
.0
0

0
.0
0

2
0
/
2
0

3
6
9
.5
9

2
2

2
3

2
2
.6
0

0
.4
9

8
/
2
0

0
.2
6

le
4
5
0

1
5
d

1
5

1
5

1
5
.0
0

0
.0
0

2
0
/
2
0

5
8
.1
4

1
5

1
6

1
5
.7
5

0
.4
3

5
/
2
0

5
8
8
.2
7

2
2

2
3

2
2
.4
0

0
.4
9

1
2
/
2
0

0
.2
3

fl
a
t3

0
0

2
8

0
3
3

3
4

3
3
.0
0

0
.7
1

2
0
/
2
0

3
8
1
4
.2
4

3
3

3
4

3
3
.9
5

0
.2
2

1
/
2
0

1
3
4
8
.5
8

3
5

3
5

3
5
.0
0

0
.0
0

2
0
/
2
0

0
.4
5

fl
a
t1

0
0
0

5
0

0
9
2

9
4

9
3
.3
0

0
.6
4

1
/
2
0

1
8
0
3
4
.5
8

9
3

9
4

9
3
.8
5

0
.3
6

3
/
2
0

1
2
4
4
9
.4
0

1
0
2

1
0
4

1
0
3
.1
0

0
.4
4

1
/
2
0

7
5
.4
6

fl
a
t1

0
0
0

6
0

0
9
4

9
6

9
4
.7
0

0
.6
4

8
/
2
0

1
6
2
6
3
.5
1

9
4

9
6

9
4
.7
0

0
.7
1

9
/
2
0

1
1
3
0
9
.9
1

1
0
3

1
0
4

1
0
3
.3
0

0
.4
6

1
4
/
2
0

6
8
.4
3

fl
a
t1

0
0
0

7
6

0
9
3

9
5

9
3
.9
0

0
.6
2

5
/
2
0

1
4
3
0
6
.6
0

9
4

9
6

9
4
.4
0

0
.5
8

1
3
/
2
0

1
0
2
5
4
.0
5

1
0
3

1
0
4

1
0
3
.5
5

0
.5
0

9
/
2
0

8
2
.7
5

la
ti
n

sq
u
a
re

1
0

1
0
7

1
1
1

1
0
8
.5
0

1
.0
7

3
/
2
0

1
8
0
5
4
.7
4

1
0
9

1
1
3

1
1
1
.0
5

1
.1
2

1
/
2
0

1
4
7
6
8
.2
1

1
1
8

1
3
0

1
2
1
.2
0

3
.4
6

1
/
2
0

9
1
.5
7

C
2
0
0
0
.5

1
8
8

1
9
3

1
9
0
.3
5

1
.2
4

1
/
2
0

1
9
9
1
5
.0
4

1
8
9

1
9
5

1
9
1
.3
0

1
.4
2

2
/
2
0

1
9
4
2
8
.7
8

2
0
1

2
0
3

2
0
2
.0
5

0
.3
8

1
/
2
0

2
0
8
.1
5

C
2
0
0
0
.9

5
0
1

5
0
1

5
0
1
.0
0

0
.0
0

2
0
/
2
0

3
9
5
2
.2
8

5
0
1

5
0
1

5
0
1
.0
0

0
.0
0

2
0
/
2
0

2
0
5
4
.2
1

5
1
1

5
1
7

5
1
3
.8
0

1
.8
3

3
/
2
0

5
5
.8
6

26

Table 6
Comparison of HTS and PSO

HTS PSO
Instance kbest kworst kavg kstd SR t(s) kbest kworst kavg kstd SR t(s)

DSJC500.5 52 52 52.00 0.00 20/20 2098.20 84 84 84.00 0.00 20/20 32.13
DSJR500.5 125 126 125.65 0.48 7/20 8179.27 141 141 141.00 0.00 20/20 652.06
DSJC1000.5 95 97 95.90 0.70 6/20 13394.64 127 127 127.00 0.00 20/20 6168.33
DSJC1000.9 251 251 251.00 0.00 20/20 3563.76 337 338 337.70 0.46 6/20 12651.42

R250.5 65 66 65.90 0.32 2/20 9777.74 86 87 86.70 0.46 6/20 8717.34
R1000.5 249 250 249.10 0.30 19/20 17816.84 283 284 283.3 0.46 14/20 9802.05
le450 5a 5 5 5.00 0.00 20/20 332.37 16 16 16.00 0.00 20/20 2324.66
le450 5b 5 5 5.00 0.00 20/20 363.68 16 16 16.00 0.00 20/20 3832.29
le450 5c 5 5 5.00 0.00 20/20 143.03 19 19 19.00 0.00 20/20 4942.30
le450 5d 5 5 5.00 0.00 20/20 373.07 19 26 20.40 2.80 16/20 5364.10
le450 15a 15 15 15.00 0.00 20/20 17.18 31 31 31.00 0.00 20/20 1119.89
le450 15b 15 15 15.00 0.00 20/20 15.95 31 31 31.00 0.00 20/20 188.40
le450 15c 15 15 15.00 0.00 20/20 95.72 35 35 35.00 0.00 20/20 4.90
le450 15d 15 15 15.00 0.00 20/20 58.14 35 35 35.00 0.00 20/20 10.97

flat300 28 0 33 34 33.00 0.71 20/20 3814.24 51 51 51.00 0.00 20/20 17.75
flat1000 50 0 92 94 93.30 0.64 1/20 18034.58 127 127 127.00 0.00 20/20 4266.42
flat1000 60 0 94 96 94.70 0.64 8/20 16263.51 127 127 127.00 0.00 20/20 4177.69
flat1000 76 0 93 95 93.90 0.62 5/20 14306.60 127 127 127.00 0.00 20/20 5319.39

latin square 10 107 111 108.50 1.07 3/20 18054.74 183 183 183.00 0.00 20/20 11781.20
C2000.5 188 193 190.35 1.24 1/20 19915.04 287 287 287.00 0.00 20/20 1668.90
C2000.9 501 501 501.00 0.00 20/20 3952.28 514 514 514.00 0.00 20/20 5932.53

4.3 HTS v.s. particle swarm optimization

Recently, particle swarm optimization (PSO) has been successfully applied to
solve various optimization problems (see e.g., [13,14,46,1,23,25]). One would
wonder whether this approach could be effective for the ECP. So far we are
unaware of any PSO algorithm proposed for the ECP in the literature. On
the other hand, for the classic GCP and its variants, though various heuristics
have been proposed, the most efficient approaches are almost based on local
searches or hybrid algorithms that integrate local search within the memetic
search framework [19,34,43]. Even if PSO is very popular, this approach is
rarely applied to the GCP or its variants. To get some ideas about the capacity
of PSO for solving the ECP, we adapted the PSO algorithm for the GCP
presented in [2] to the ECP and tested it with the runtime condition specified
in Section 3.1 on the 21 selected instances. The comparative results between
HTS and PSO shown in Table 6 indicate a clear dominance of HTS over PSO
on these instances. Indeed, for each tested instance, HTS performs significantly
better than PSO in terms of best, worst and average values.

5 Conclusion and future research

The equitable coloring problem (ECP) is a useful model in practice, but repre-
sents a real computational challenge. Given the highly constrained feature of
the ECP imposed by the equity constraint, we devised an effective tabu search
method that integrates both feasible and infeasible local searches into a same
search procedure. In order to reinforce the search ability of the proposed al-
gorithm, we proposed a new scheme considering changes involving three color
classes. Given that the new scheme is computationally expensive, we devised
a constrained neighborhood strategy to exclude unpromising moves.

27

Computational assessments on 73 benchmark instances revealed that the pro-
posed method competes favorably with two recent state-of-the-art approaches
in the literature. For all 73 benchmark instances except one case, our algorithm
is capable of matching or improving the best-known upper bounds. In particu-
lar, the proposed algorithm established 15 improved upper bounds which can
serve as new references for evaluating new ECP algorithms.

We also compared HTS with its two underlying local search components to
show the interest of the hybrid scheme of integrating both the feasible and
infeasible local searches into a same search procedure. We carried additional
experiments to illustrate the effectiveness of the proposed new neighborhood,
which proves to be critical to the performance of the HTS algorithm.

For future work, we can consider several research directions. First, we can
further improve the proposed HTS algorithm by investigating other types of
neighborhoods and exploring other ways of combing the proposed neighbor-
hoods within the framework of tabu search. Second, population based memetic
algorithms are among the most powerful approaches for the classical graph col-
oring problem [18,34,43]. As a result, it would be interesting to investigate this
approach for solving the ECP, by using the HTS algorithm as the key local
search procedure of a memetic algorithm.

Finally, it is worth exploring the possibilities of using the proposed algorithm
to solve practical problems related to the ECP. For instance, Furmańczyk
and Kubale [17] mentions a university timetabling problem, namely assigning
university courses to time slots in a way that avoids scheduling incompatible
pairs of courses at the same time and spreads the courses evenly among the
available time slots. This problem can be formulated as the equitable coloring
problem, where each course is associated with a vertex, and there is an edge
between each pair of courses that cannot be scheduled at the same time. In
particular, courses that share a common teacher or a common classroom (or
both) are linked by an edge. A feasible equitable coloring of the resulting graph
corresponds then to a timetable. Given the effectiveness of the proposed HTS
algorithm for the ECP, it can be applied to deal with such a problem.

Acknowledgements

We are grateful to the anonymous referees for valuable suggestions and com-
ments which helped us improve the paper. This work is partially supported
by the National Natural Science Foundation Program of China [Grant No.
71771099,71401059,71620107002,71531009], the Fundamental Research Funds
for the Central Universities, HUST (Grant no. 2016AC055), and the fund from
Huazhong University of Science and Technology (5001300001).

28

References

[1] Al-Dunainawi Y., Abbod M.F., Jizany A., A new MIMO ANFIS-PSO based
NARMA-L2 controller for nonlinear dynamic systems, Engineering Applications
of Artificial Intelligence, 2017, 62:265–275.

[2] Anh T.H., Giang T.T.T., Vinh T.L., A Novel Particle Swarm Optimization-
Based Algorithm for the Graph Coloring Problem, International Conference
on Information Engineering and Computer Science (ICIECS), 2009. DOI:
10.1109/ICIECS.2009.5365201

[3] Aringhieri R., Duma D., Grosso A., Hosteins P., Simple but effective heuristics
for the 2-constraint bin packing problem, Accepted to Journal of Heuristics,
DOI:10.1007/s10732-017-9326-0.

[4] Bahiense L., Frota Y., Noronha T.F., Ribeiro C.C., A branch-and-cut algorithm
for the equitable coloring problem using a formulation by representatives,
Discrete Applied Mathematics, 2014, 164(5):34–46.

[5] Bodlaender H.L., Fomin F.V., Equitable colorings of bounded treewidth graphs,
Theoretical Computer Science, 2005, 349(1):22–30.

[6] Brélaz D., New methods to color the vertices of a graph, Communications of
the ACM, 1979, 22(4):251–256.

[7] Brown J.R., Chromatic scheduling and the chromatic number problem,
Management Science, 1972, 19(4-part-1):456–463.

[8] Campêlo M., Corrêa R.C., Campos V.A., On the asymmetric representatives
formulation for the vertex coloring problem, Discrete Applied Mathematics,
2008, 156(7):1097–1111.

[9] Chen Y.N., Hao J.K., Glover F., An evolutionary path relinking approach for the
quadratic multiple knapsack problem, Knowledge-based Systems, 2016, 92:23–
34.

[10] Chen Y.N., Hao J.K., Glover F., A hybrid metaheuristic approach for the
capacitated arc routing problem, European Journal of Operational Research,
2016, 253(1): 25–39.

[11] Chen B.L., Lih K.W., Equitable coloring of trees, Journal of Combinatorial
Theory, Series B, 1994, 61(1):83–87.

[12] Chen B.L., Lih K.W., Wu P.L., Equitable coloring and the maximum degree,
European Journal Combinatorics, 1994, 15(5):443–447.

[13] De A., Mamanduru V.K.R., Gunasekaran A., Subramanian N., Tiwari M.K.,
Composite particle algorithm for sustainable integrated dynamic ship routing
and scheduling optimization, Computers & Industrial Engineering, 2016, 96:
201–215.

29

[14] De A., Kumar S.K., Gunasekaran A., Tiwari M.K., Sustainable maritime
inventory routing problem with time window constraints, Engineering
Applications of Artificial Intelligence, 2017, 61:77–95.

[15] Dorne R., Hao J.K., Tabu search for graph coloring, T-coloring and set T-
colorings, in Meta-Heuristics: Advances and Trends in Local Search Paradigms
for Optimization, S. Voss, S. Martello, I.H. Osman and C. Roucairol (Eds.),
Kluwer Academic Publishers, 1999, Chapter 6, pp. 77–92.

[16] Furmańczyk H., Kubale M., Equitable coloring of graphs, Contemporary
Mathematics, American Mathematical Society, 2004, 352:35–54.

[17] Furmańczyk H., Kubale M., The complexity of equitable vertex coloring of
graphs, Journal of Applied Computer Science, 2005, 13(2):95–106.

[18] Galinier P., Hao J.K., Hybrid evolutionary algorithms for graph coloring,
Journal of Combinatioal Optimization, 1999, 3(4):379–397.

[19] Galinier P., Hertz A., A survey of local search methods for graph coloring,
Computers & Operations Research, 2006, 33(9): 2547–2562.

[20] Glover F., Taillard E., A user’s guide to tabu search, Annals of Operations
Research, 1993, 41(1):1–28

[21] Glover F., Kochenberger G.A., (Eds.), Handbook of metaheuristics, Springer,
2006.

[22] Glover F., Hao J.K., The case for strategic oscillation, Annals of Operations
Research, 2011, 183(1):163–173.

[23] Haddar B., Khemakhem M., Hanafi S., Wilbaut C., A hybrid quantum particle
swarm optimization for the Multidimensional Knapsack Problem, Engineering
Applications of Artificial Intelligence, 2016, 55:1–13.

[24] Hajnal A., Szemerédi E., Proof of a conjecture of P. Erdös, Erdös P., Rényi
A.(Herausgeber):Combinatorial Theory and its Application, 1970, 4:601–623.

[25] Hein D., Hentschel A., Runkler T., Udluft S., Particle swarm optimization
for generating interpretable fuzzy reinforcement learning policies, Engineering
Applications of Artificial Intelligence, 2017, 65: 87–98.

[26] Hertz A., de Werra D., Using tabu search techniques for graph coloring,
Computing, 1987, 39(4):345–351.

[27] Irani S., Leung V., Scheduling with conflicts and applications to traffic signal
control, SODA, 1996, 96:85–94.

[28] Jin Y., Hao J.K, Hamiez J.P., A memetic algorithm for the minimum sum
coloring problem, Computers & Operations Research, 2014, 43(3): 318–327.

[29] Jin Y., Hao J.K, General swap-based multiple neighborhood tabu search for
the maximum independent set problem, Engineering Applications of Artificial
Intelligence, 2015, 37:20–33.

30

[30] Kostochka A.V., Equitable colorings of outerplanar graphs, Discrete
Mathematics, 2002, 258(1):373–377.

[31] Kostochka A.V., Nakprasit K., On equitable ∆-coloring of graphs with low
average degree, Theoretical Computer Science , 2005, 349(1):82–91.

[32] Lai X., Hao J.K., Glover F., Backtracking based iterated tabu search for
equitable coloring, Engineering Applications of Artificial Intelligence, 2015,
46:269–278.

[33] Lih K.W., Wu P.L., On equitable coloring of bipartite graphs, Discrete
Mathematics, 1996, 151(1):155–160.

[34] Lü Z., Hao J.K., A memetic algorithm for graph coloring, European Journal of
Operational Research, 2010, 203(1):241–250.

[35] Méndez-Dı́az I., Zabala P., A branch-and-cut algorithm for graph coloring,
Discrete Applied Mathematics, 2006, 154(5):826–847.

[36] Méndez-Dı́az I., Nasini G., Seveŕın D., A polyhedral approach for the equitable
coloring problem, Discrete Applied Mathematics, 2014, 164:413–426.

[37] Méndez-Dı́az I., Nasini G., Seveŕın D., A tabu search heuristic for the equitable
coloring problem, International Symposium on Combinatorial Optimization,
2014, 347–358.

[38] Méndez-Dı́az I., Nasini G., Seveŕın D., A DSATUR-based algorithm for the
equitable coloring problem, Computers & Operations Research, 2015, 57:41–
50.

[39] Meyer W., Equitable coloring, The American Mathematical Monthly, 1973,
80(8):920–922.

[40] Mezura-Montes E., Coello C.A.C., Useful infeasible solutions in engineering
optimization with evolutionary algorithms, Mexican International Conference
on Artificial Intelligence, 2005, 652–662.

[41] Moeini R., Soltani-nezhad M., Daei M., Constrained gravitational search
algorithm for large scale reservoir operation optimization problem, Engineering
Applications of Artificial Intelligence, 2017, 62:222–233.

[42] Qin J., Xu X., Wu Q., Cheng T.C.E., Hybridization of tabu search with feasible
and infeasible local searches for the quadratic multiple knapsack problem,
Computers & Operations Research, 2016, 66:199–214.

[43] Porumbel D.C., Hao J.K., Kuntz P., An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring,
Computers and Operations Research, 2010, 37(10):1822–1832.

[44] San-Segundo P., A new DSATUR-based algorithm for exact vertex coloring,
Computers & Operations Research, 2012, 39(7):1724–1733.

[45] Sewell E.C., An improved algorithm for exact graph coloring, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 1996, 26:359–373.

31

[46] Tsai H.C., Unified particle swarm delivers high efficiency to particle swarm
optimization, Applied Soft Computing, 2017, 55: 371–383.

[47] Tucker A., Perfect graphs and an application to optimizing municipal services,
Siam Review, 1973, 15(3):585–590.

[48] Wolpert D.H., Macready W.G., No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation, 1997,1(1): 67–82.

[49] Yap H.P., Zhang Y., The equitable ∆-coloring conjecture holds for outerplanar
graphs, Bulletin of the Institute of Mathematics Academia Sinica, 1997, 25:143–
149.

32

