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Abstract

Biclustering is a very useful tool for analyzing microarray data. It aims to
identify maximal groups of genes which are coherent with maximal groups
of conditions. In this paper, we propose a biclustering algorithm, called
BiMine+, which is able to detect significant biclusters from gene expres-
sion data. The proposed algorithm is based on two original features. First,
BiMine+ is based on the use of a new tree structure, called Modified Biclus-

ter Enumeration Tree (MBET), on which biclusters are represented by the
profile shapes of genes. Second, BiMine+ uses a pruning rule to avoid both
trivial biclusters and combinatorial explosion of the search tree. The perfor-
mance of BiMine+ is assessed on both synthetic and real DNA microarray
datasets. Experimental results show that BiMine+ competes favorably with
several state-of-the-art biclustering algorithms and is able to extract func-
tionally enriched and biologically relevant biclusters.

Keywords: Biclustering, gene expression data, evaluation function,
enumeration algorithm, data mining.

1. Introduction

DNA microarray technology is a revolutionary method enabling the mea-
surement of expression levels of thousands of genes in a single experiment
under diverse experimental conditions. Associated to this technology, mi-
croarray data analysis aims at extracting useful information that can be
applied in medical and biological studies (47; 23; 31). In this context, bi-
clustering of time series data is a particularly interesting approach since
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it allows the simultaneous identification of a maximum of genes that show
highly correlated expression patterns through a maximum of time-dependent
experimental conditions (samples) (7; 38; 27).

DNA microarray data is usually represented by a data matrix M(I, J),
where the ith row, i ∈ I={1, 2, . . . , n}, represents the ith gene, the jth column,
j ∈ J={1, 2, . . . ,m}, represents the jth condition (or time points) and the cell
M [i, j] represents the expression level of the ith gene under the jth condition.
A bicluster is a subset of genes associated with a subset of conditions, i.e., a
couple (I ′, J ′) such that I ′ ⊆ I and J ′ ⊆ J .

Given a data matrix M(I, J), the biclustering problem consists in ex-
tracting from M(I, J) a group of coherent and significant biclusters of large
size. In its general form, the biclustering problem is NP-hard (16; 38).

Existing biclustering algorithms can be grouped into two large classes
(3): Those that adopt a systematic search approach and those that adopt a
stochastic search one, also called metaheuristic approach. Algorithms that
adopt a systematic search approach include greedy algorithms (9; 15; 16; 35;
50), divide-and-conquer algorithms (28; 44) and enumeration algorithms (4;
34; 48). Algorithms based on metaheuristic approach include neighbourhood-
based algorithms (13), GRASP (20; 21) and evolutionary algorithms (12; 22;
25; 40).

In this paper, we introduce BiMine+1, an enumerative heuristic algo-
rithm designed for biclustering time series gene expression data. BiMine+
is based on the use of a new tree structure, called Modified Bicluster Enu-

meration Tree (MBET). MBET can represent all types of biclusters, i.e.,
constant, additive, multiplicative and coherent evolution biclusters (38), of
maximum size with similar trajectory patterns of expression levels and helps
identify large biclusters with low overlap. The pruning rule employed by
BiMine+ allows it to avoid both trivial biclusters and combinatorial explo-
sion of the search tree. Unlike many biclustering algorithms that may lead
to highly overlapped biclusters or fail to detect certain types of biclusters,
BiMine+ is expected to extract all types of high quality biclusters of large
size with low overlap.

The remainder of the paper is organized as follows: In section 2, we
present the Average Spearman’s Rho (ASR) evaluation function. In section

1The BiMine+ software is available at: http://www.info.univ-
angers.fr/pub/hao/BiMine+/BiMine+.html
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3, we describe the general BiMine+ algorithm. In section 4, experimental
studies of BiMine+ on both synthetic and real DNA microarray datasets are
presented. Moreover, for real DNA microarray data, we illustrate a biological
validation of the extracted biclusters via two web-tools, FuncAssociate (11)
and GOTermFinder 2. Conclusions are given in the last section.

2. The ASR evaluation function

Many evaluation functions exist for biclusters evaluation. One of the most
popular evaluation functions is the Mean Squared Residue (MSR) (16). It
has been used by several biclustering algorithms (2; 12; 15; 21; 40; 51; 52).
MSR is deficient to assess correctly the quality of certain types of biclusters
like multiplicative models (1; 15; 43; 50), though.

In (4), we have proposed a new evaluation function, called Average Spear-

man’s Rho (ASR). Let (I ′, J ′) be a bicluster in a data matrix M(I, J), the
ASR evaluation function is then defined by:

ASR(I ′, J ′) = 2 ∗ max







∑

i∈I′

∑

j∈I′;j≥i+1

ρij

|I′|(|I′|−1) ,

∑

k∈J ′

∑

l∈J ′;l≥k+1

ρkl

|J ′|(|J ′|−1)







(1)

where ρij (i 6= j) is the spearman’s rank correlation (33) associated with
the row indices i and j in the bicluster (I ′, J ′), ρkl (k 6= l) is the spearman’s
rank correlation associated with the column indices k and l in the bicluster
(I ′, J ′) and ASR(I ′, J ′) ∈[-1..1].

A high (resp. low) ASR value, close to 1 (resp. close to -1), indicates that
the genes/conditions of the bicluster are strongly (resp. weakly) correlated.

Let us notice that since the time complexity of ρij is O(m)(46) then time
complexity of ASR is O(n2m).

Finally, notice that the existing evaluation functions can roughly be clas-
sified into two families: numerical measures and qualitative measures. Nu-
merical measures, like Pearson’s correlation or Euclidean distance, are easy
to compute but they are quite sensitive toward outliers and noise. Qualita-
tive measures, like measures that consider only ups, downs and no change
of conditions, are very sensitive to precise the values of changes. Hence, as
ASR is based on Spearman’s rank correlation it can be considered as a good
compromise between numerical measures and qualitative ones.

2http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
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In the next section, we describe our new biclustering algorithm BiMine+
which is an improvement of the BiMine algorithm (4).

3. The BiMine+ Algorithm

BiMine+ is a heuristic (approximate) enumeration biclustering algo-
rithm whose objective is to extract coherent and maximal size biclusters,
i.e., a maximal groups of genes with a maximal groups of conditions where
the genes exhibit highly correlated activities over a range of conditions. The
algorithm uses a Modified Bicluster Enumeration Tree (MBET) to represent
the identified biclusters, where each node of MBET contains the gene profile
shape of a bicluster. The profile shape of a gene is defined as the behaviour
of this gene, i.e., up, down or no change, over the conditions of the bicluster
to which this gene belongs. This representation is important because it is
recognized that in time-course microarray data analysis, genes are considered
to be in the same cluster if their trajectory patterns of expression levels are
similar (26; 36; 42; 45). To limit the size of MBET, BiMine+ employs a
pruning rule to eliminate any bicluster that has a number of the conditions
lower than a given threshold. Finally, BiMine+ uses the ASR evaluation
function to provide a final assessment of each extracted bicluster.

Let M be a data matrix, BiMine+ operates in three steps. The first step
discretizes the data matrix M to obtain M ′. The second step constructs from
M ′ MBET that represents every possible maximal bicluster with a low-level
overlap. Finally, we select among the extracted biclusters those that have an
ASR value equal to or greater than a fixed threshold.

3.1. Discretization of the data matrix

During this step, we discretize the initial data matrix M (I, J) where
I={1, 2, . . . , n} and J={1, 2, . . . ,m}, into a matrix M ′ defined as follows:

M ′[i, l] =







1 if M [i, l] < M [i, l + 1]
−1 if M [i, l] > M [i, l + 1]
0 if M [i, l] = M [i, l + 1]

(2)

with i ∈ [1..n] and l ∈[1..m − 1].
In microarray data analysis, genes are considered to be in the same cluster

if their curves of genes expression levels are similar across a set of conditions
(36; 42; 45). Hence, thanks to the Equation 2, the data matrix M ′ represents
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information about the profile shape, i.e., up (1), down (-1) and no change
(0), of all rows (genes) over columns (conditions).

Discretization may have some drawbacks in some cases since it transforms
real-valued data into discrete-valued data. Despite of this, discretization has
been largely used for analysis of time series gene expression data (24; 29; 30;
32; 41). In our case, the purpose of using the discretized matrix M ′ is to
identify coherent biclusters that share similar profile patterns regardless of
the exact numeric values in the data matrix.

Finally, the ASR evaluation function is based on the real values of the
initial data matrix and guarantees further the assessment of each identified
bicluster.

3.2. Construction of the MBET tree and extraction of biclusters

After the discretization step, we construct the Modified Bicluster Enu-

meration Tree . The MBET tree is structured as follows (see Figures 1–5 for
an illustration example):

1. The root is the empty bicluster.

2. The nodes at level one are the possible biclusters made up by one gene
and its corresponding profile shape.

3. The ith child of a node is made up by two parts: The first one is the
union of the genes of the father and those of the ith uncle, starting from
the right side of the father. The second one is the intersection of the
conditions of the father and those of the ith uncle.

Since the number of the possible biclusters (nodes of MBET) increases ex-
ponentially, we employ a parametric rule to prune progressively some nodes.
Indeed, a node is pruned if it has a number of conditions lower than a fixed
threshold.

During the construction step, we extract the largest bicluster (leaf) from
each subtree rooted by a node of the first level. In fact, the leaves of each
subtree have a high-level overlap because they share, most of the time, the
same genes. Hence, for each subtree we extract only the largest bicluster
with a low-level overlap.

Among the extracted biclusters we drop those that are included in other
biclusters or that have an ASR value lower than a fixed threshold or contain
no more than two genes. The set of the remaining biclusters represents a
solution to the biclustering problem.
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To describe formally the BiMine+ algorithm, let us define some nota-
tions:
M : data matrix,
M ′: discretized data matrix,
Tn: subtree made up by a node n and its children,
n, n′: nodes in MBET,
genen: set of genes in the node n,
condn: set of conditions in the node n,
Bc = (Ic, Jc): current bicluster,
δ: threshold of conditions number,
β: quality threshold of a bicluster,
B: set of biclusters.

Algorithm 1 initializes MBET to the subtree T0 made up by the empty
node and its children.

Algorithm 1 InitMBET

1: Input: M ′

2: Output: MBET // subtree made up by the empty node and its children
3: T0 = empty node
4: for each gene ∈ M ′ do

5: Extend T0 by Bc=(Ic,Jc) as a child of the root // where Ic = gene

and Jc = conditions of gene

6: endfor

7: MBET = T0

8: Return MBET

Proposition 1: Time complexity of InitMBET is O(nm), where n is
the number of the rows and m the number of the columns of the data matrix
M ′.

Proof : Indeed, this step is achieved via a scanning of the whole data
matrix M ′ that is of size nm. •

Algorithm 2 continues the construction of MBET and extracts biclusters.
The first call to BuildMBET is made with T0 as a parameter.

Proposition 2: Time complexity of BuildMBET is O(2nmlog(m)).
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Algorithm 2 BuildMBET (MBET )//Current MBET

1: Output: B
2: B = ∅
3: for each node n in MBET do

4: for each unprocessed brother n′ of n do

5: Ic= genen ∪ genen′ ; Jc= condn ∩ condn′ ;
6: if |Jc| ≥ δ then

7: Bc= (Ic, Jc)
8: Insert Bc as a child of n

9: if Bc have a maximum size leaf in the current subtree, rooted
in level 1 then

10: B = B ∪ {Bc}
11: endif

12: endif

13: endfor

14: Tn= subtree made up by n and its children
15: BuildMBET (Tn)
16: endfor

17: Return B
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Proof : Indeed, to construct a new node from two existing ones in MBET,
we merge the genes and we make the intersection of the conditions. Since the
conditions of a node are sorted, the construction of the intersection of two
subsets of conditions of size m boils down to the search of m elements in a
sorted array of size m. This can be done via a dichotomic search with a time
complexity O(mlog(m)). Then, a linear scanning is achieved on the extracted
conditions to keep those that have the same profile shape in both nodes (bi-
clusters). This can be done in time O(m). Hence, the construction of a node
is made in time O(mlog(m)). Since we have O(2n) nodes in the worst case
then the construction of MBET is made in a time O(2nmlog(m)). Hence,
time complexity of BuildMBET is O(2nmlog(m)). •

Algorithm 3 selects among the extracted biclusters those for which the
value of the ASR evaluation function is greater than or equal to a fixed
threshold β.

Algorithm 3 SelectBiclusters

1: Input: B
2: Output: B
3: for each bicluster (I ′, J ′) in B do

4: if ASR(I ′, J ′) < β then B = B\{(I ′, J ′)}
5: endif

6: endfor

7: Return B

Proposition 3: Time complexity of SelectBiclusters is O(n3m).

Proof : In fact, for a given bicluster, the ASR evaluation function is com-
puted in time O(n2m). In the worst case, we have n−1 extracted biclusters.
Hence, time complexity of SelectBiclusters is O(n3m). •

Then the whole BiMine+ algorithm can be described in Algorithm 4.
Proposition 4: Time complexity of BiMine+ is O(2nmlog(m)).

Proof : Time complexity of the discretization step is O(nm). Indeed,
this step is achieved via a scanning of the whole data matrix M of size nm.
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Algorithm 4 BiMine+

1: Input: M ; δ ; β

2: Output: B
3: Discretize M by using Equation 2 to obtain M ′

4: MBET = InitMBET (M ′)
5: B = BuildMBET (MBET )
6: B = SelectBiclusters(B)
7: Return B

According to proposition 1, time complexity of InitMBET is O(nm). Ac-
cording to proposition 2, time complexity of BuildMBET is O(2nmlog(m)).
Finally, according to proposition 3, time complexity of SelectBiclusters is
O(n3m).

Hence, time complexity of BiMine+ is O(2nmlog(m)). •

3.3. Illustrative Example

Table 1: Data matrix M .
c′1 c′2 c′3 c′4 c′5 c′6

g1 10 20 5 15 40 18
g2 20 40 10 30 30 20
g3 23 12 8 15 29 50
g4 4 8 2 6 5 5
g5 23 12 8 15 29 50
g6 73 73 88 11 9 62

Let M be a data matrix (Table 1). Let us set δ = 4 and β = 0.85. During
the first step, we make the discretization of M using Equation 2 to obtain
the data matrix M ′ (Table 2). During the second step, we construct MBET
that represents every possible maximal bicluster that can be obtained from
M ′.

The first level of MBET is made up of nodes that represent the possible
biclusters with one gene. Each node represents a row of data matrix M ′

(Figure 1). The second level of MBET is composed of nodes that are the
union of genes and the intersection of the conditions in the first level. In
Figure 2, we explain the construction of the children of node g1. Each edge
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Table 2: Data matrix M ′.
c1 c2 c3 c4 c5

g1 1 -1 1 1 -1
g2 1 -1 1 0 -1
g3 -1 -1 1 1 1
g4 1 -1 1 -1 0
g5 -1 -1 1 1 1
g6 0 1 -1 -1 1

Figure 1: First level of MBET.

Figure 2: Children construction of the first node of the second level of MBET.
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Figure 3: Second level of MBET subtree rooted by the node g1.

without cross represents a valid combination between two nodes (with δ ≥ 4).
First, we perform the union of genes of nodes labelled g1 and g2 (first uncle),
and the intersection of the conditions (c1:1, c2:-1, c3:1, c4:1, c5:-1) of g1 with
those of (c1:1, c2:-1, c3:1, c4:0, c5:-1) of g2. The number of real conditions
(Table 1) after the intersection is greater than 4, i.e., c′1, c

′
2, c

′
3, c

′
4, c

′
5, c

′
6 where

each condition l in M ′ corresponds to (l, l+1) in M . Hence, we insert it as a
first child of g1. After that, we process g1 with the node labelled g3 (second
uncle). We obtain the bicluster (g1, g3; c2:-1, c3:1, c4:1) with the number of
real conditions equal to 4, i.e., c′2, c

′
3, c

′
4, c

′
5, hence, we insert it as a child of g1.

We carry out the same process with node g4. We obtain the bicluster (g1, g4;
c1:1, c2:-1, c3:1) with the number of conditions equal to 4, we insert it as a
child of g1. We process now g1 with g5, we obtain the bicluster (g1, g5; c2:-1,
c3:1, c4:1) with the number of real conditions equal to 4, hence we insert it.
Finally, with g6 we obtain the bicluster (g1, g6; ∅) with the number of real
conditions equal to 0, hence we do not insert it (Figure 3). This completes
the second level of the subtree of MBET rooted by the node g1. The third
level of MBET is made up of nodes that are the union of genes and the
intersection of the conditions in the second level (Figure 4). At each level of
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Figure 4: Last level of MBET subtree rooted by the node g1.
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Figure 5: Final MBET: Best biclusters are presented with bold line.
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MBET, we keep only nodes whose number of conditions is greater than or
equal to 4.

At each constructed subtree, we extract the maximum size bicluster (leaf
with a maximum size). In our case, We see that for the subtree rooted by
g1, we have two maximum size leaves with the same volume, i.e., {( g1, g2,
g4), (c′1, c

′
2, c

′
3, c

′
4)} and {(g1, g3, g5), (c′2, c

′
3, c

′
4, c

′
5)}, hence, we take the last

one (Figure 4).
We repeat the same process for the nodes g2, g3, g4 and g5 in level 1. We

do not process g6 because it has no right brothers.
Finally, each extracted bicluster is assessed using ASR, then we obtain B

= {{(g1, g3, g5),(c
′
2, c

′
3, c

′
4, c

′
5)};{(g2, g4),(c

′
1, c

′
2, c

′
3, c

′
4)}} with ASR respectively

equal to 0.86 and 1. This constitutes the best group of biclusters (Figure 5).

3.4. Discussion

BiMine+ is an improvement of BiMine (4). It differs from BiMine on
several features. First, the MBET tree used by BiMine+ is different from
the structure (BET) used by BiMine. In fact, BET stores the real values of
the genes expression dataset, while MBET stores the genes expression pro-
file shape from the discretized gene expression dataset. This enables to find
coherent behaviours of genes regardless of the exact numeric values in the
data matrix (37). In fact, the discretization step of the algorithms for time
course expression analysis that takes explicitly into account the temporal de-
pendencies between the time-course gene expression profiles should perform
better than those that neglect them (19; 37). MBET allows BiMine+ to
explore this property.

Second, the pruning rule used by BiMine+ to cut MBET branches is
different from the one used by BiMine. In fact, BiMine+ cuts all the nodes
having a number of conditions lower than a fixed threshold (requiring in the
worst case O(m) time) while BiMine uses the ASR function as a pruning
rule (requiring in the worst case O(n2m) time). Using ASR for each node
of MBET would simply be too time consuming because in the worst case
we have 2n nodes in MBET to calculate. In practice, BiMine+ is less time
consuming than BiMine while outperforming BiMine.

Finally, BiMine considers almost all the leaves of each subtree of BET as
extracted biclusters. Since several biclusters may share same genes, BiMine

may lead to overlapped biclusters. For this reason, BiMine+ extracts only
one maximum size bicluster for every subtree to reduce biclusters overlap
and to maximize the volume of each obtained bicluster.
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4. Experimental Studies

In this section, we assess the BiMine+ algorithm on both synthetic and
real DNA microarray data. For the synthetic data, we compare BiMine+
results with the results of the original BiMine (4), BILS (5) and BicFinder

(6), and some prominent biclustering algorithms used by the community,
namely, CC (16), OPSM (9), ISA (10) and Bimax (44). For these reference
algorithms, we have used Biclustering Analysis Toolbox (BicAT), a recent
software platform for clustering-based data analysis that integrates all these
biclustering algorithms (8). For the real datasets, in addition to the al-
gorithms mentioned before, we compare our algorithm with the results of
Samba (48), MOEA (40) and EA FRAMEWORK (12).

For our experiments, BILS needs an initial bicluster as its starting point.
This initial bicluster can be provided by any means. For instance, one can
generate a bicluster randomly, but this may lead to an initial solution of bad
quality. A more interesting strategy is to employ a fast greedy algorithm to
obtain rapidly a bicluster of reasonable quality. We use this strategy in this
work and adopt two well-known algorithms: CC and OPSM.

The BiMine+ algorithm was implemented in Java and was run on a PC
Intel Core 2 Duo T6400 with 2.0GHz CPU and 3.5Gb RAM.

4.1. Synthetic Data

4.1.1. Data, comparison criteria and experimental settings

Datasets: Following (13; 14; 50), we have generated two types of syn-
thetic datasets of size (I,J)= (200, 20). These datasets contains constant, ad-
ditive, multiplicative and coherent evolution biclusters (38). The first (resp.
second) type of dataset contains biclusters without (resp. with) overlap of
biclusters. To obtain statistically stable results, for each type of datasets, we
have generated 10 problem instances by randomly inserting the biclusters at
different places without altering the original column order of the data matrix.
Each embedded bicluster has contiguous genes/conditions.

The objective of this experiment is to determine if an algorithm is able
to extract exactly all the embedded biclusters.

Comparison Criteria : Following (14), we have used two ratios given
below to evaluate our biclustering algorithm:

θShared =
Scb

Totsize

∗ 100 (3)
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with
Scb = Portion size of biclusters correctly extracted
Totsize = Total size of correct biclusters

θNotShared =
Sncb

Totsize

∗ 100 (4)

with
Sncb = Portion size of biclusters not correctly extracted
Totsize = Total size of corrected biclusters

The ratio θShared (resp. θNotShared) expresses the percentage of shared
(resp. not shared) biclusters volume which corresponds (resp. not corre-
sponds) with the real biclusters. In fact, when θShared (resp. θNotShared) is
equal to 100% the algorithm extracts the correct (resp. not correct) biclus-
ters. A perfect solution has θShared =100% and θNotShared=0% representing,
thus, the exact number of genes and conditions of implanted biclusters.

Protocol for Experiments: We have fixed, in this experimental study,
δ at 5 (resp. 6) and β at 0.1 for biclusters without (resp. with) overlap.
For the four reference algorithms, we used the default values for different
parameters as used in (35). We run all the algorithms and we select the
4 biclusters obtained by each algorithm which best fit the 4 real biclusters.
We compute the θShared and the θNotShared for each algorithm to show the
averaged percentage of volume of the resulting biclusters which is shared and
not shared with the real biclusters.

4.1.2. Results

Table 3 shows the best biclusters provided by each algorithm for the first
dataset.

As we can see in Table 3, BiMine can extract 100% of implanted biclusters
with an extra volume that represents 33.03% of implanted biclusters. On the
other side, BiMine+ extracts almost all types of biclusters, i.e., 93.34% of
implanted biclusters with an extra volume that represents 39.17%.

In fact, when BiMine+ constructs MBET, 100% of implanted biclusters
are represented, but the strategy of BiMine+ is to extract the maximum size
bicluster for every subtree rooted by a node of the first level to maximize the
volume of each obtained bicluster and to avoid highly overlapped biclusters.
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Table 3: BiMine+ results and comparison with other algorithms in synthetic data without
overlapped biclusters.

Algorithms θShared θNotShared

CC 18.21 36.57
OPSM 46.39 74.42
ISA 39.38 5.31
Bimax 58.18 21.39
BiMine 100 33.03
BiMine+ 93.34 39.17
BILS 61.27 76.86
BicFinder 100 36.18

Hence, if several biclusters rooted by the same node exist, then only the
biggest is considered, this may not be exactly the implanted bicluster. That
is why, BiMine+ is marginally affected. BiMine+ outperforms BILS on
θShared and θNotShared. However, BicFinder is slightly better than BiMine+.

On the other hand, the best of the reference algorithms, i.e., Bimax, can
extract only 58.18% of implanted biclusters with 21.39 % of extra volume. CC
uses the MSR function of the selected elements as the biclustering criterion.
When the signal of the implanted biclusters is weak, the greedy nature of
CC may delete some rows and columns of the implanted biclusters in the
beginning of the algorithm and miss the deleted rows and columns in the
output biclusters. ISA uses only up-regulated and down-regulated constant
expression values in its biclustering algorithm. When coherent biclusters
exist, ISA may miss some rows and columns of the implanted biclusters.
OPSM seeks only up and down regulation expression values with coherent
evolution. Its performance decreases when there exist scenarios constant
biclusters. The discretization preprocessing used by Bimax cannot identify
the elements in the coherent biclusters. Hence, the algorithm cannot find
exactly the implanted biclusters.

Table 4 shows the best biclusters provided by each algorithm for the
second dataset.

As we can see in Table 4, the results with BiMine+ present the highest
coverage of the correct biclusters. In fact, BiMine+ (resp. BiMine) can
extract 89.17 % (resp. 85.35 %) of implanted biclusters with an extra volume
that represents 44.16 % (resp. 41.78 %). BiMine+ outperforms BILS and
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Table 4: BiMine+ results and comparison with other algorithms in synthetic data with
overlapped biclusters.

Algorithms θShared θNotShared

CC 9.21 47.94
OPSM 42.87 49.31
ISA 23.28 23.97
Bimax 34.07 3.43
BiMine 85.35 41.78
BiMine+ 89.17 44.16
BILS 54.92 67.25
BicFinder 79.94 46.11

BicFinder on θShared and θNotShared. The best of the reference algorithms, i.e.,
OPSM, can extract only 42.87 % of implanted biclusters with 49.31 % of extra
volume. To find overlapped biclusters in a given matrix, some algorithms,
e.g., CC, need to mask the discovered biclusters with random values which
is not necessary for BiMine+. ISA and OPSM are sensitive to overlapping
biclusters due to the normalization step used in the preprocessing phase.
With overlapping biclusters, the expression value range after normalization
becomes narrower. Table 4 shows that BiMine+ is marginally affected by
the implanted overlap biclusters compared to other algorithms.

4.2. Real data

The synthetic datasets are always biased regarding the underlying model
and only reflect some aspects of biological reality. In this section, we show
computational results on two well-known real datasets: Saccharomyces cere-
visiae dataset and yeast cell cycle dataset. Missing values are replaced by
random ones (16).

To fix the two parameters δ (threshold of conditions number) and β (ASR
quality threshold), we use a tuning rule based on the p-value. In fact, the
p-value uses a cumulative hypergeometric distribution. It implies the proba-
bility of observing the number of genes from a particular Gene Ontology (GO)
category, i.e., Biological Process, Molecular Function, Cellular Component,
within each bicluster. The probability p for detecting at least q genes, from
a particular category within a cluster of size n, is defined as follows:
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p = 1 −

q−1
∑

i=0

(

gc

i

) (

gg − gc

n − i

)

(

gg

n

) (5)

where gc is the number of genes within a category and gg is the number of
genes within the genome (49). The p-values are computed for each functional
category in each cluster. They are used to evaluate the statistical significance
for the genes in each bicluster, which means how well the genes match with
the different GO categories. Notice that a smaller p-value, close to 0, is
indicative of a better match (49).

To tune δ and β, we first fix one threshold and tune the other, and vice-
versa (initially, we set δ to 1 and β to 0). For each experiment, ten values
are tested between 0.1 and 1 with a stepwise of 0.1 for β, and |J | values are
tested between 1 and |J | with a stepwise of 1 for δ. For each combination,
we compute the p-values of the obtained biclusters. We pick the combination
with the lowest p-value for the final experiment. The procedure stops when
the p-value becomes high.

4.2.1. Saccharomyces cerevisiae dataset

The Saccharomyces Cerevisiae dataset3 contains the expression levels of
2993 genes under 173 experimental conditions. In order to evaluate the bio-
logical relevance of BiMine+, we compute the p-values to indicate the qual-
ity of the extracted biclusters. Following the same process as in (18; 35; 44),
we extract the 100 largest biclusters out of 1441 found on this dataset. These
100 biclusters are obtained after a post-filtering procedure in order to elim-
inate insignificant and small biclusters like Cheng et al. (15). The results
of BiMine+ are compared against BiMine and reported scores of Bimax,
OPSM, ISA, Samba and CC from (44). The idea is to determine whether the
set of genes discovered by biclustering algorithms shows significant enrich-
ment with respect to a specific Gene Ontology (GO) annotation. We use the
web-tool FuncAssociate (11) to evaluate the discovered biclusters. FuncAs-

sociate computes the adjusted significance scores for each bicluster. Indeed,
the adjusted significance scores assess genes in each bicluster by computing
adjusted p-values (p), which indicates how well they match with the different

3Available at http://www.tik.ethz.ch/sop/bimax/
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GO categories. For this experiment, the two parameters of BiMine+ δ and
β are set to 9 and 0.2. The running time of BiMine+ on this test was 10
minutes. Note that the running time of BiMine was approximatively 5 days.
In fact, the tree pruning rule used by BiMine consumes much more time
than the rule used by BiMine+.

Figure 6 shows, for each significant score p (p=5%, 1%, 0.5%, 0.1% and
0.001%) and for each compared algorithm, the percentage of the total ex-
tracted biclusters by the algorithm reaching the indicated p-value.

Figure 6: Proportions of biclusters significantly enriched by GO annotations on Saccha-
romyces Cerevisiae dataset.

From Figure 6, we observe that for each p-value (p=5%, 1%, 0.5% and
0.1%), 100% of extracted biclusters by BiMine+ reaches the score. For
p=0.001%, the percentage drops to 85%. BicFinder and BILS are slightly
better than BiMine+ only on p=0.001%, but have the same performance
for the other p-values. On the other hand, even the best competing method
OPSM cannot achieve such a performance. Indeed, the percentage of the
biclusters extracted by OPSM reaching a score of p = 5%, 1%, 0.5% and
0.1% is respectively 100%, 94%, 87%, and 87%. Yet, OPSM performs slightly
better for p=0.001 with a percentage of 87% against 85% for BiMine+. We
also note that globally BiMine+ performs better for all p-values compared to
CC, Samba, ISA and Bimax. Finally, BiMine+ outperforms BiMine whose
performance is close to Bimax.
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4.2.2. Yeast Cell-Cycle dataset

The Yeast Cell-Cycle dataset is described in (49). This dataset is pro-
cessed in (16) and publicly available from (17). It contains the expression
profiles of more than 6000 yeast genes measured at 17 conditions over two
complete cell cycles. In our experiments we use 2884 genes selected by (16).
For this dataset, three criteria are used. First, we assess the coverage. Sec-
ond, we evaluate the biological relevance of the extracted biclusters like used
for the saccharomyces cerevisiae dataset. Finally, we identify the biological
annotations for the obtained biclusters. For this experiment, the two param-
eters of BiMine+ δ and β are experimentally set to 5 and 0.2. Running
BiMine+ on this dataset leads to a group of 883 biclusters on this dataset.
Following (15), a post-filtering procedure is applied to eliminate insignificant
and small biclusters and retain 100 largest biclusters. The running time of
BiMine+ on this dataset was 38 minutes (The running time of BiMine was
approximatively 2 days).

Coverage measurement

To evaluate the performance of BiMine+, we compute the total number
of cells in the dataset that are covered by the biclusters like used in (12; 40).
Our 100 biclusters selected cover 51.76% cells of the initial dataset, while
this coverage is 13.36% for BiMine (4), 51.34% for MOEA (40) and 50.99%
for EA FRAMEWORK (12). The poor coverage of BiMine can be explained
by its tree pruning rule based on the ASR function. BiMine+ avoids this
problem and can extract biclusters offering a much better coverage.

Biological relevance

In order to evaluate the biological relevance of BiMine+, we use again
the p-values and apply the web-tool FuncAssociate (11). The results of
BiMine+ are compared against reported scores of CC, ISA, Bimax, OPSM
and BiMine on this dataset from (4).

Figure 7 shows, for each significant score p (p=5%, 1%, 0.5%, 0.1% and
0.001%) and for each compared algorithm, the percentage of the statistically
significant biclusters extracted by the algorithm with the indicated p-value.
We observe that BiMine+ is highly competitive to the other algorithms
on this dataset. 100% of discovered biclusters of BiMine+ are statistically
significant with p=5%, 1%, 0.5% and 0.1%. Even with p ≤ 0.001%, 89% of
discovered biclusters of BiMine+ are statistically significant against 51% for
BiMine, 64% for Bimax, 86% for BILS and 91% for BicFinder.

Analysis of biological annotation enrichment of biclusters
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Figure 7: Proportions of Biclusters significantly enriched by GO annotations on Yeast
Cell-Cycle dataset.

In order to identify the biological annotations for the biclusters, we use
GOTermFinder (http://db.yeastgenome.org/cgi-bin/GO/goTermFinder) which
is a tool available in the Saccharomyces Genome Database (SGD). GOTermFinder
is designed to search for the significant shared GO terms of the groups of genes
and provides the user with the means to identify the characteristics that the
genes may have in common. We present the significant shared GO terms (or
parent of GO terms) used to describe two selected set of genes (extracted by
BiMine+ on yeast cell-cycle dataset) with 136 genes × 6 conditions and 131
genes × 7 conditions in each bicluster. These two biclusters have respectively
an ASR value equal to 0.24 and 0.73. Following (39), we report the most
significant GO terms shared by these biclusters in terms of biological pro-
cess, molecular function and cellular component. For example, with the first
bicluster (Table 5), the genes (YAL059W, YBL072C, YBR048W, YBR181C,
YBR189W, YCR031C, YDL083C, YDL208W, YDR025W, YDR064W, YDR418W,
YDR447C, YDR450W, YER074W, YER131W, YGR214W, YJR123W, YLR048W,
YLR068W, YLR167W, YLR192C, YLR441C, YML026C, YMR143W, YMR230W,
YMR269W, YNL096C, YNL112W, YNL302C, YOL040C, YOL127W, YOR056C,
YOR293W, YPL090C, YPR102C) are particularly involved in the ribosome
biogenesis and ribonucleoprotein complex biogenesis. The values within
parentheses after each GO term in Table 5, such as (43.4%, 5.05e-23) in
the first bicluster, indicate the cluster frequency and the statistical signifi-
cance. The cluster frequency (43.4%) shows that out of 136 genes in the first
bicluster 59 belong to this process, and the statistical significance is provided
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Table 5: Most significant shared GO terms (process, function, component) for two biclus-
ters on yeast cell-cycle dataset.

Biclusters Biological Process Molecular function Cellular component

136 genes × translation (43.4%,5.05e-23) structural constituent cytosolic ribosome
6 conditions maturation of SSU-rRNA of ribosome (39.0%, 5.98e-50)

(14.7%, 1.73e-13) (36.8%, 1.84e-39) cytosolic part
ribosome biogenesis structural molecule (37.5%, 8.78e-43)
(25.7%, 1.11e-12) activity ribosome
maturation of SSU-rRNA (36.8%, 6.09e-30) (42.6%, 5.99e-39)
from tricistronic rRNA ribosomal subunit
transcript (36.8%, 3.79e-38)
(SSU-rRNA, 5.8S cytosolic small
rRNA, LSU-rRNA) ribosomal subunit
(14.0%, 1.78e-12) (19.9%, 9.20e-29)
ribonucleoprotein complex
biogenesis(25.7%, 6.44e-11)

131 genes × DNA-dependent double-stranded replication fork
7 conditions DNA replication DNA binding (11.5% , 1.65e-12)

(12.2% ,2.42e-09) (5.3%, 0.00035) nuclear replication
DNA strand elongation structure-specific fork (9.9% , 4.04e-11)
(8.4% , 4.03e-09) DNA binding non-membrane-bounded
DNA strand elongation (6.1% , 0.00276 ) organelle
during DNA replication structural constituent (40.5%, 8.17e-10)
(8.4% , 4.03e-09) of ribosome intracellular
lagging strand elongation ( 10.7%, 0.00612) non-membrane-bounded
(6.9%, 9.90e-09) organelle (40.5%, 8.17e-10)
DNA metabolic process
(22.1%, 2.74e-08)
DNA replication
( 13.0%, 7.38e-08)

by a p-value of 5.05e-23 (highly significant).
In microarray data analysis, genes are considered to be in the same cluster

if their curves of genes expression levels are similar across a set of conditions
(36; 42; 45). In Figure 8, we show the two biclusters of Table 5 found by
BiMine+. From a visual inspection of the biclusters presented, we can notice
that the genes do present a similar behaviour under the selected conditions.
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Figure 8: Two Biclusters found by BiMine+ on yeast cell-cycle dataset: (a) 136 genes ×
6 conditions with ASR = 0.24 (b) 131 genes × 7 conditions with ASR = 0.73.

All these experiments tend to suggest that the proposed approach is able
to detect biologically significant and functionally enriched biclusters with low
p-value.

5. Conclusion

In this paper, we have proposed a novel enumeration algorithm, called
BiMine+, for biclustering of gene expression data. BiMine+ is designed to
extract coherent and maximum size biclusters with little overlap. The perfor-
mances of the BiMine+ algorithm is assessed on synthetic datasets as well as
two real DNA microarray datasets. Computational experiments show highly
competitive results of BiMine+ in comparison with our three biclustering
algorithms (BiMine, BILS and BicFinder) and other popular biclustering
algorithms. Comparative study shows that the BiMine+ algorithm can find
statistical and biological significant biclusters.
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