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Abstract

The Steiner tree problem (STP) is one of the most popular combinatorial optimiza-
tion problems with various practical applications. In this paper, we propose a Break-
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Steiner tree problem with revenue, budget and hop constraints (STPRBH), which
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collected revenues, subject to both budget and hop constraints. Starting from a
probabilistically constructed initial solution, BLS uses a Neighborhood Search (NS)
procedure based on several specifically designed move operators for local optimiza-
tion, and employs an adaptive diversification strategy to escape from local optima.
The diversification mechanism is implemented by adaptive perturbations, guided by
dedicated information of discovered high-quality solutions. Computational results
based on 240 benchmarks show that BLS produces competitive results with respect
to several previous approaches. For the 56 most challenging instances with unknown
optimal results, BLS succeeds in improving 49 and matching one best known results
within reasonable time. For the 184 instances which have been solved to optimality,
BLS can also match 167 optimal results.
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1 Introduction

Many problems in network designing, e.g., electricity, telecommunication, heat-
ing, transportation, should determine a least cost tree spanning all or some of
the vertices of a given graph (Avella et al., 2005; Voβ, 2006). These problems
usually can be modeled as the Steiner tree problem (STP) or the minimum
spanning tree problem (MSTP), which are generally formulated as follows:
given a graph G = (V,E) with vertex set V = {1, . . . , n} which is partitioned
into two sets: a set of terminal vertices and a set of Steiner vertices, and edge
set E = {(i, j) : i, j ∈ V, i 6= j} where each edge (i, j) ∈ E has an associated
cost cij ≥ 0. In some cases, a specified vertex is chosen as the root vertex. The
STP consists of determining a subtree spanning all terminal vertices (includ-
ing the root vertex) and possibly some Steiner vertices, so as to minimize the
total cost of the obtained tree. As a special variant of the STP, for the MSTP,
all vertices are terminal which should be included in any feasible solution.
Unlike the MSTP that can be solved to optimality within polynomial time
(Prim, 1957), the STP has proven to be NP-hard (Garey et al., 1977).

In this paper, we study an important variant of the STP: the Steiner tree
problem with revenue, budget and hop constraints (denoted by STPRBH, as
formulated in Costa et al., 2009). In this problem, in addition to the costs
cij ≥ 0 associated with each edge (i, j) ∈ E, there is also a revenue ri ≥ 0 as-
sociated with each vertex i ∈ V . The problem consists of determining a rooted
(without loss of generality, vertex 1 is fixed as the root) subtree of graph G, so
as to maximize the collected revenues, while guaranteeing that the total cost
of the solution does not exceed a given budget B (budget constraint), and
the number of edges from the root to any vertex in the solution subtree does
not exceed an upper bound equal to h (hop constraint). As a generalization
of both the STPP (STP with profits, see Johnson et al., 2000; Costa et al.,
2006; Haouari et al., 2013) and the STPH (STP with hop constraints, see Voβ,
1999; Akgün, 2011), the STPRBH is theoretically important and can be used
to model many real-life problems, e.g., local access and telecommunication
networks, heating or water supply systems, transportation planning, etc, in
which the collected revenues should be maximized, while the available bud-
get is limited and the reliability of the system should be guaranteed. For the
STPRBH, researchers have developed various solution approaches. Respec-
tively, Costa et al. (2008) proposed several fast heuristics, including a greedy
algorithm, a destroy-and-repair algorithm and a tabu search (TS) algorithm.
Computational results for instances with up to 500 vertices and 12500 edges
were reported. In addition to the heuristics, several exact algorithms have
also been proposed, including branch-and-cut (Costa et al., 2009), branch-
and-price (Sinnl, 2011). Note that all the existing exact algorithms can only
solve instances with up to 500 vertices and 625 edges to optimality, for larger
instances, no result has been reported by any exact algorithm.
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In this paper, we are interested in the STPRBH and propose a heuristic algo-
rithm based on the Breakout Local Search (BLS) for this problem. BLS follows
the general Iterated Local Search scheme (Lourenco et al., 2003) and alter-
nates between a neighborhood search phase and a perturbation phase. BLS
has recently shown its effectiveness for solving several combinatorial optimiza-
tion problems, such as sum coloring (Benlic and Hao, 2012), maximum clique
(Benlic and Hao, 2013a), quadratic assignment (Benlic and Hao, 2013b), and
max-cut(Benlic and Hao, 2013c). For the STPRBH, the proposed BLS algo-
rithm integrates a probabilistic constructive procedure to generate its initial
solution, a Neighborhood Search (NS) procedure based on three specifically
designed move operators to discover local optima, and an adaptive perturba-
tion strategy to continually move from one local optimum to another one, by
varying its perturbations depending on the search status. As a supplementary
technique, a number of high-quality solutions are stored in a solutions pool, in
order to provide useful information for local optimization and perturbations.
Computational results based on a set of 240 STPRBH instances, including 56
the most challenging instances with unknown optimal solutions, demonstrate
the effectiveness of the proposed BLS algorithm. In particular, it succeeds in
improving 49 and matching one best known results out of these 56 unsolved
instances.

The rest of this paper is organized as follows: After giving some preliminary
definitions in Section 2, Section 3 describes the details of the proposed BLS
approach. Computational results are provided in Section 4, and Section 5
concludes this paper.

2 Preliminary definitions

In this section, we provide some preliminary definitions which are useful for a
precise description of the proposed algorithm.

Definition 1. A budget and hop constrained Steiner tree (BHS-tree) is a rooted
subtree of graph G meeting both the budget and hop constraints. A BHS-tree
is also called a feasible solution of the problem.

Definition 2. Given a BHS-tree T , a feasible candidate path with respect to
T is a path originating at a vertex i ∈ v(T ) (v(T ) denotes the set containing
all the vertices belonging to solution T ) and connecting to an uncollected
profitable vertex j (j /∈ v(T ), rj > 0), such that even after inserting this path
to T , the obtained solution is still a BHS-tree, i.e., satisfying both the budget
and hop constraints.

Definition 3. A saturated BHS-tree is a BHS-tree for which no feasible can-
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didate path exists. Otherwise, the BHS-tree is an unsaturated (or partial)
BHS-tree. Contrary to a saturated BHS-tree, an unsaturated (or partial) BHS-
tree can be further extended by adding some feasible candidate path without
violating the budget and hop constraints.

Definition 4. The constrained search space Ω is composed of all possible
BHS-trees (including saturated ones or unsaturated ones). The saturated con-
strained search space Ω is composed of all possible saturated BHS-trees which
is clearly a subspace of Ω.

As detailed below, our BLS algorithm restricts its search within the saturated
constrained search space Ω. By doing so, the search process focuses always on
the reduced zones composed of the most promising candidate solutions.

3 The proposed BLS algorithm

In this paper, we present for the first time a Breakout Local Search (BLS)
approach for solving the STPRBH, just as outlined in Algorithm 1, whose key
components are presented in the following subsections.

Our BLS algorithm operates within the saturated constrained search space Ω
(Section 2). The main idea of the approach for the STPRBH can be described
as follows: starting from a saturated BHS-tree probabilistically constructed
by the dedicated probabilistic constructive procedure (see Algorithm 1, line 3
and Section 3.2), BLS applies a Neighborhood Search (NS) procedure to reach
a local optimum at first (line 4, see Section 3.3). After local optimization,
BLS then attempts to continually move from one local optimum to another
by employing varying perturbations, depending on the state of the search.
For this purpose, an adaptive perturbation mechanism is developed, which is
guided by some dedicated information of a number of recorded high quality
solutions stored in the HSP (line 2 and line 10, see Section 3.3.2 and 3.4). Each
time the incumbent solution is perturbed, the NS procedure is called again to
improve it to a new local optimum (line 11). If the NS procedure reaches a
local optimum not far enough from the original one, BLS then perturbs it more
strongly, otherwise, BLS switches to weaker perturbations subsequently (lines
16-21). This process is repeated until (1) the upper bound of the collected
revenues in Eq. (2) (see Section 3.2.2) is reached (meaning that an optimal
solution is obtained), or (2) the best found solution cannot be further improved
after visiting M new local optima (M is a parameter), or (3) the allowed
computation time is consumed.

The performance of the BLS algorithm relies on several key factors. First,
the initialization procedure should be able to generate different solutions of
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reasonable quality, which serve as the restarting points of independent runs
of BLS. Second, the neighborhood structure is also a key component because
different neighborhoods lead to different search trajectories, thus solutions of
different qualities. Third, we should control the jump magnitude, denoted by
L, which determines the perturbation intensity applied to the current solu-
tion. In our case, this corresponds to decide how many paths to delete when
perturbing the incumbent solution. Indeed, if L is too small, the search usually
returns to the original local optimum, leading to search stagnation. Otherwise,
if L is too large, the perturbation is reduced to random restarting. Finally,
it is important to consider the perturbation type, e.g., directed perturbation
or random perturbation. Unlike conventional pure random perturbations, we
additionally employ a directed perturbation operator with the aid of selected
high quality solutions, which provides useful information to guide the search
towards good solutions. The components of the proposed BLS algorithm for
the STPRBH are described below.

Algorithm 1 Breakout Local Search BLS(G,B, h) for the STPRBH

Require: Graph G(V, E), budget limit B, hops limit h, jump magnitude L ∈
[Lmin, Lmax], high-quality (elite) solution pool HSP

Ensure: The best solution found meeting both the budget and hop constraints
1: /* Initialization phase */
2: HSP ← InitHSP () /* Initialize HSP, see Sect. 3.3.2 */
3: T ← InitSolution(G, B, h) /* Construct an initial solution, see Sect. 3.2 */
4: T ← NS(T ) /* Optimize T by neighborhood search, see Sect. 3.3 */
5: T best ← T

6: L← Lmin

7: /* Main search procedure which is iterated until the stop condition is met */
8: while The stop condition is not met do

9: /* Perturb T with L and HSP (Sect. 3.4) and then improve it (Sect. 3.3) */
10: T

′ ← Perturb(T, HSP, L)
11: T ∗ ← NS(T

′

)
12: /* Update the best solution T best found so far if needed */
13: if T ∗ is better than T best (see Sect. 3.3.1) then

14: T best ← T ∗

15: end if

16: /* Determine the jump magnitude L adaptively, detailed in Sect. 3.4 */
17: if T ∗ is too close to T (defined in Sect. 3.4) then

18: L←Min(L + 1, Lmax)
19: else

20: L←Max(L− 1, Lmin)
21: end if

22: /* Update T , which serves as the starting point of a new round of search */
23: T ← T ∗

24: end while

25: return T best
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3.1 Solution presentation

To represent the candidate solutions of the problem in a convenient way, we
adopt a compact representation using an one-dimensional vector T = {ti, i ∈
V } which is explained as follows. Precisely, according to the constraints of
the STPRBH, each feasible solution is a rooted tree with fixed root vertex
1. Therefore, for each vertex i belonging to a feasible solution T (except the
root vertex), we can identify and record its parent vertex ti. Specifically, the
elements of T = {ti, i ∈ V } are defined such that ti = the parent vertex of
vertex i if i ∈ v(T )\1; Otherwise ti = Null.

Consequently, each feasible solution is uniquely identified by a vector T =
{ti, i ∈ V }. Inversely, given a vector T = {ti, i ∈ V } corresponding to a
feasible solution, it is easy to reconstruct the corresponding solution.

3.2 Probabilistic constructive procedure for initialization

Like any meta-heuristic based algorithm, BLS requires an initial solution to
start its search. Moreover, given its stochastic nature, multiple runs of BLS
from different initial solutions are typically applied to find the best possible
solutions for a problem instance. To generate an initial solution, we use the cri-
teria developed by Costa et al. (2008) for identifying, evaluating and selecting
feasible candidate paths for insertion and devise a probabilistic constructive
procedure in order to be able to obtain different initial solutions for multi-
ple runs of the procedure. Starting from an empty solution containing only
the root vertex, the constructive procedure identifies all the feasible candidate
paths with respect to the incumbent solution at first and evaluates their prior-
ities subsequently. Then, it probabilistically selects a candidate path to insert
to the incumbent solution, according to its priority. This process is repeated
until no feasible candidate path exists, meaning that a saturated BHS-tree
satisfying both the budget and hop constraints is obtained, which would serve
as the starting point of our BLS algorithm.

3.2.1 Hop constrained shortest path problem

Before presenting the criteria for identifying, evaluating and selecting a can-
didate path, we should solve the hop constrained shortest path problem at
first, i.e., the problem of determining a shortest path between two vertices
containing at most h edges. This problem can be solved efficiently by dynamic
programming (Lawler, 1976): let L(i, j, l) represent the cost of the shortest
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path between vertex i and vertex j, containing at most l edges, then:

L(i, i, 0) = 0, i ∈ V,

L(i, j, 0) =∞, i, j ∈ V, j 6= i,

L(i, j, l) = min{L(i, j, l − 1), mink|(k,j)∈E{L(i, k, l − 1) + ckj}, i, j ∈ V, l ≥ 1}.
(1)

Note that in Costa et al. (2008), each time a new path is inserted, the costs
of all the edges belonging to the incumbent solution are reset to 0 and the
hop constrained shortest path algorithm is run again to re-calculate all the
possible L(1, j, l), l ≤ h. Contrary to this, with our BLS algorithm, we apply
a preprocessing step to calculate and store all the possible L(i, j, l), i, j ∈
V, rj > 0, 1 ≤ l ≤ h which are then used directly during the search process,
instead of re-calculating them repeatedly. This technique allows the algorithm
to save computation time. In the following subsections, whenever reporting
the computation time of BLS, this preprocessing time is always included.

3.2.2 Upper bound of the collected revenues

After calculating all the possible L(1, j, h), we can recognize all the vertices
reachable within h hops, i.e., L(1, j, h) < ∞. Then, we get an upper bound
Rub of the collected revenues as follows:

Rub =
∑

L(1,j,h)<∞
rj. (2)

Clearly, if the collected revenues reaches the upper bound Rub, then the incum-
bent solution corresponds to an optimal solution and the search process stops.
This rule is indeed used as one of the termination criteria of the proposed BLS
algorithm.

3.2.3 Identifying feasible candidate paths

At each step of constructing a saturated BHS-tree, we use the following cri-
terion to dynamically identify all the feasible candidate paths. Specifically,
for each profitable vertex j uncollected by the incumbent partial BHS-tree T
(rj > 0 and j /∈ v(T )), let L(i, j, h−hi) denote the cost of the hop-constrained
shortest path between vertex j and a vertex i ∈ v(T ), containing at most h−hi

edges, hi being the number of edges between vertex i and the root vertex. We
use min{L(i, j, h − hi), i ∈ v(T )} to denote the cost of the hop-constrained
shortest path between vertex j and the partial BHS-tree T . Consequently, if
min{L(i, j, h−hi), i ∈ v(T )} ≤ B−∑

(m,n)∈e(T ) cmn (e(T ) is the set containing
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all the edges of T , and
∑

(m,n)∈e(T ) cmn represents the total cost consumed by
T ), it corresponds to a feasible candidate path connecting vertex j. Otherwise,
no feasible candidate path connecting vertex j exists.

3.2.4 Evaluating feasible paths

At each step of initial solution construction, there may be more than one

feasible candidate paths available. In Costa et al. (2008), the ratio
r3
j

L(1,j,h)

which considers both the objective and the constraint is used to evaluate the
priority of each candidate path connecting an uncollected profitable vertex

j /∈ v(T ). In this work, we use instead the ratio
r3
j

min{L(i,j,h−hi),i∈v(T )} for this
evaluation. Given two paths, the path with a higher ratio is considered to be
of more priority than the other one. Additionally, due to the reasons described
in Section 3.2.1, this criterion is essentially equivalent to the one developed in
Costa et al., [10].

3.2.5 Selecting and inserting a candidate path

After identifying all feasible candidate paths, we should decide which path to
insert to the incumbent solution. In order to be able to start the search from
different starting points, we introduce the following randomized selection rule:

(1) If no feasible candidate path is available, stop the constructive procedure
and return the incumbent solution (which is already a saturated BHS-
tree) as the initial solution;

(2) If there is only one feasible candidate path available, select and insert it
into the incumbent solution;

(3) If there are m (m > 1) feasible candidate paths available, select the path
with the ith (2 ≤ i ≤ m) highest priority with probability (1−θ)i−1θ, θ ∈
(0, 1], and select the path with the highest priority with probability 1−∑m

i=2 (1− θ)i−1θ = θ + (1− θ)m, so as to guarantee that the accumulated
probability is equal to 1.

The above probabilistic criterion has two interesting features. First, each fea-
sible candidate path has the opportunity to be selected and inserted. Conse-
quently the probabilistic constructive procedure is theoretically able to cover
the whole solution space. Second, the probability that a feasible candidate
path is selected is proportional to its priority. As such, the constructed initial
solutions tend to be of good quality.

In addition, because of the hop-constraints, cycles may occur after inserting
a new path. In this case, we destroy cycles by inspecting vertices with two
incoming edges and eliminating the first inserted edge, as suggested in Costa
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et al. (2008).

Finally, in the above-described probabilistic constructive procedure, if we let
θ = 1.0, it is reduced to the greedy algorithm (Costa et al., 2008). However,
after a series of preliminary experiments (detailed in Section 4.2, Fig. 2), we
find that the generalizations with small values of θ (i.e., θ <0.5) generally
perform better than large ones (i.e., θ >0.5), especially than the choice of the
greedy algorithm (i.e., θ=1.0), which unexceptionally selects the candidate
path with the highest priority.

3.3 Neighborhood Search (NS) for local optimization

¿From an initial solution constructed above, our BLS algorithm improves it to
a local optimum by using a specifically designed Neighborhood Search (NS)
procedure, which iteratively replaces the incumbent solution with the best
improving solution of its neighborhood, until such a solution does not exist.
The proposed NS procedure is detailed in the following subsections.

3.3.1 Evaluation of solutions

To identify the best neighboring solution of the incumbent solution T within
the neighborhood N(T ) (see next subsection), BLS uses the objective value
(i.e., the collected revenues) as the main evaluation criterion. Thus given two
solutions, the one collecting a higher revenue is better than the one collecting
a lower revenue. If both solutions collect the same amount of revenue, the
solution with a lower cost is naturally considered to be the better one. Given
this evaluation rule, BLS identifies at each iteration the best improving solu-
tion among all the candidate neighboring solutions in N(T ) and moves to this
selected solution.

3.3.2 Neighborhood structure

The neighborhood structure is the key component of any neighborhood-based
search method. We design three dedicated move operators for the SPTRBH
denoted by Move k(i1, . . . , ik), 1 ≤ k ≤ 3 for generating neighboring solutions.
As a preliminary, we first introduce two basic operators: Delete(i), Insert()
as follows.

Delete(i): delete the path connecting leaf vertex i from the incumbent solution.
Note that for path deletion, we just delete the edges between vertex i and the
first met branch vertex or profitable vertex, while maintaining the left edges
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between vertex i and the root vertex (e.g., Fig. 1, a → b → c, see below for
more comments).

Insert(): iteratively insert one path (excluding the recently deleted ones) con-
necting some profitable vertex to the incumbent solution, according to the
criteria described in Section 3.2, until the incumbent solution becomes a satu-
rated BHS-tree, i.e., no feasible candidate path can be further inserted. Note
that zero or several paths may be inserted by Insert() (as shown in Fig. 1,
c→ d).

With these two basic operators, three move operators for generating neighbor-
ing solutions, i.e., Move k(i1, . . . , ik), 1 ≤ k ≤ 3, are implemented as follows.

Move 1(i1) = Delete(i1) + Insert(),

Move 2(i1, i2) = Delete(i1) + Delete(i2) + Insert(),

Move 3(i1, i2, i3) = Delete(i1) + Delete(i2) + Delete(i3) + Insert().

(3)

where i1, i2, i3 ∈ lv(T ), lv(T ) is the set containing all the leaf vertices of the
incumbent solution T .

With these move operators, the generated neighboring solutions are denoted
by T

⊕
Move k(i1, . . . , ik). Note that different k corresponds to different neigh-

boring solutions.

1

2

3 4 5

6

7 8

9

(a)

1

2

3 4 5

6

7

9

(b)

1

2

3 4 5

9

(c)

1

2

3 4 5

910

11

12

13

14

(d)

Fig. 1. Generate a neighboring solution by operator Move 2(8, 7)

For example, Fig. 1 illustrates the process for generating a neighboring solution
by Move 2(8, 7), where the profitable vertices with ri > 0 are drawn in box
(i.e., vertices 1, 3, 4, 7, 8, 9, 11, 13, 14), and the others are drawn in circle
(i.e., vertices 2, 5, 6, 10, 12). As shown in Fig. 1, from the original solution a,
the path connecting leaf vertex 8 is deleted at first to get solution b. Then the
path connecting leaf vertex 7 is deleted to get solution c. Finally, three new
paths connecting profitable vertices 11, 13, 14 are inserted into c to obtain a
neighboring solution d of the original solution a, i.e., d← a

⊕
Move 2(8, 7).

10



Given that vertex 6 is a branch vertex that has two branches, when deleting
the path connecting leaf vertex 8 from a, we only delete edge (6,8) from a,
instead of deleting all the edges between vertex 8 and the root. Similarly,
because vertex 4 is a profitable vertex with r4 > 0, when deleting the path
connecting leaf vertex 7, we only delete edges (4,6) and (6,7) from b.

Clearly, if |lv(T )| = m, there are Ck
m = m!

k!(m−k)!
possible neighboring solutions

with move operator Move k(i1, . . . , ik). Therefore, if we consider all the possi-
ble neighboring solutions, the neighborhood N(T ) contains O(m3) neighboring
solutions. Although larger neighborhoods generally lead to better local opti-
mal solution, more computation time is also needed. For the trade-off between
solution quality and efficiency, in this work, we try to reduce the neighbor-
hood N(T ) to contain O(m) solutions selected from all the O(m3) possible
candidate ones by the following steps.

(1) Let N(T, k), 1 ≤ k ≤ 3 denote the sub-neighborhood associated with
operator Move k(i1, . . . , ik). Then, initialize N(T, 1) to contain all the
m possible neighboring solutions generated by Move 1(i1), and initialize
N(T, 2), N(T, 3) to be ∅.

(2) As a preliminary, try to construct and fill a high-quality (or elite) solution
pool HSP as follows. For each individual, call the probabilistic construc-
tive procedure described in Section 3.2 to construct an initial solution,
and then iteratively replace the incumbent solution with the best im-
proving neighboring solution of its smallest sub-neighborhood N(T, 1),
until no improving solution exists in N(T, 1). Independently repeat this
process Q times to obtain Q local optima, i.e., T 1, . . . , TQ, then calcu-
late their average collected revenues and retain the ones collecting no less
revenues than the average value. These selected solutions are considered
as high-quality solutions and stored into the HSP.

(3) For each vertex i, calculate the probability pi that vertex i belongs to the
solutions stored in the HSP, i.e.,

pi =

∑
T a∈HSP ya

i

|HSP | . (4)

where ya
i indicates whether vertex i belongs to solutions T a ∈ HSP or

not. If i ∈ v(T a), ya
i = 1, otherwise, ya

i = 0.
(4) Apply a probabilistic deletion operator, denoted by ProbDel(k), to prob-

abilistically delete k paths connecting k leaf vertices from the incumbent
solution T , with the aid of the HSP (as detailed in Algorithm 2). Note that
in Algorithm 2, each time one path connecting a leaf vertex is deleted,
some branch vertex may become a new leaf vertex. The path connecting
this new leaf vertex should also be considered when deciding the next
path to delete.

(5) For each k, 2 ≤ k ≤ 3, generate |lv(T )| = m neighboring solutions and
add them into sub-neighborhood N(T, k) as follows: for each leaf vertex
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i ∈ lv(T ), delete the path connecting vertex i at first, and then execute
the probabilistic deletion operator ProbDel(k − 1) to probabilistically
delete k − 1 paths. After that, execute the basic operator Insert() to
insert as many feasible candidate paths (excluding the recently deleted
ones) as possible into the incumbent solution, to obtain a saturated BHS-
tree, i.e.,

N(T, k) = {T + Delete(i) + ProbDel(k − 1) + Insert(), i ∈ lv(T )}, 2 ≤ k ≤ 3.(5)

(6) Let N(T ) be the union set of all the above three sub-neighborhoods, i.e.,

N(T )← N(T, 1) ∪N(T, 2) ∪N(T, 3). (6)

Algorithm 2 ProbDel(k) for probabilistically deleting k paths from the in-
cumbent solution T
Require: Solution T , elite solution pool HSP , number of paths to delete k

Ensure: Solution after deleting k paths
1: for each vertex i do

2: Calculate the probability pi that vertex i belongs to the solutions stored in
the HSP , according to Eq. (4)

3: end for

4: l← 0
5: while l < k and leaf vertex i ∈ lv(T ), pi < 1 exists do

6: Deleted← false

7: while Deleted = false do

8: Randomly select a path connecting some leaf vertex i ∈ lv(T ), pi < 1
9: /* Delete the path connecting leaf vertex i with probability 1− pi */

10: if GetRandomNum(100) > 100× pi then

11: T ← Delete(i)
12: Deleted← true

13: end if

14: end while

15: l← l + 1
16: end while

17: return T

The neighborhood N(T ) defined in Eq. (6) will be used as the final neigh-
borhood of the NS procedure. The following properties of this neighborhood
are worth mentioning. First, each sub-neighborhood N(T, k), 1 ≤ k ≤ 3 con-
tains m neighboring solutions, hence the final neighborhood N(T ) contains
3m neighboring solutions, instead of the original O(m3) possible ones. Sec-
ond, N(T, k1)

⋂
N(T, k2) = ∅, k1 6= k2, it means that any neighboring solution

belongs to only one sub-neighborhood. Third, for each leaf vertex i ∈ lv(T ), at
least one neighboring solution corresponding to deleting the path connecting
vertex i belongs to each sub-neighborhood N(T, k), 1 ≤ k ≤ 3. This feature
could be helpful to reinforce the diversity of the solutions of the neighborhood.
Fourth, the higher the probability pi of leaf vertex i, the larger its probability
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to be retained while generating neighboring solutions. We utilize this mech-
anism to select O(m) promising neighboring solutions among all the O(m3)
candidates. Finally, every neighboring solution is unexceptionally a saturated
BHS-tree, thus the search is restricted within the saturated constrained search
space Ω.

In addition, to verify the impact of the neighborhood structure, we tested two
other different neighborhoods, i.e., N(T, 1) and N(T, 1)∪N(T, 2) respectively,
and compared their performances with the neighborhood defined by Eq. (6).
Experiments showed that BLS with Eq. (6) yielded statistically much bet-
ter results (in terms of solution quality) than these two compared variants,
though some more (remaining reasonable) computational time is needed. To
ensure that BLS finds high quality solutions, we adopt Eq. (6) as the final
neighborhood.

Based on the above described neighborhood and the way to identify the best
improving neighboring solution, the NS procedure starts from a given initial
saturated BHS-tree T , and iteratively replaces T with the best improving
neighboring solution of its neighborhood N(T ). This process continues until
no such solution exists in the neighborhood. At this point, a local optimum is
reached. To continue its search, our BLS procedure applies a dedicated pertur-
bation mechanism for escaping from the incumbent local optimum, according
to the procedure detailed below.

3.4 Adaptive perturbation mechanism

The purpose of the perturbation mechanism is to allow BLS to escape from
the current local optimum in order to discover other local optima of better
quality. For this, we employ as follows an adaptive perturbation mechanism
which varies the perturbation intensity, depending on the search status.

Precisely, each time the search reaches a local optimum T , we perturb it to
obtain a new solution. The perturbation consists in deleting L (initialized to
Lmin) paths from T and inserting subsequently as many feasible candidate
paths as possible into the incumbent solution. From this perturbed solution,
we call the NS procedure to reach another local optimal solution T ∗. If the new
solution T ∗ is too close to T (see below for the exact definition), we increase
the jump magnitude L by 1, unless L = Lmax; otherwise, we decrease L by 1,
unless L = Lmin. This process is repeated, until the stop condition is met.

To assess if two solutions T a and T b are close or not, we calculate their Ham-
ming distance D(T a, T b), based on which we further define the average dis-
tance between the solutions of the high-quality solutions pool HSP (Section
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3.3.2, step 2), denoted by AvgDis(HSP ), as follows:

AvgDis(HSP ) =

∑
T a,T b∈HSP,a<b D(T a, T b)

1
2
× |HSP | × (|HSP | − 1)

. (7)

Based on this, T ∗ is considered to be too close to T if D(T, T ∗) < α ×
AvgDis(HSP ). Parameter α would be further discussed in Section 4.2.

In addition to the jump magnitude L, BLS also considers the type of pertur-
bations. In this work, we develop a directed perturbation operator, with the
aid of the HSP. The basic idea is that the vertices which frequently occur in
high-quality solutions are more likely to belong to the global optimal solution.
Therefore, when we perturb the incumbent solution, it would be wise to retain
these specific vertices with a larger probability, and retain the others with a
smaller probability. Specifically, let T be the current local optimal solution,
we perturb T by the following three steps, with a given jump magnitude L.

• For each vertex i ∈ v(T ), calculate the probability pi that vertex i belongs
to the solutions stored in the HSP, according to Eq. (4).
• Call Algorithm 2 to probabilistically delete L paths, unless no leaf vertex

with pi < 1 exists.
• Execute the basic operator Insert() (Section 3.3.2) to insert as many feasible

candidate paths (excluding the paths deleted in above step) as possible into
the incumbent solution, until no path can be further inserted.

This perturbation procedure has the following features. First, the incumbent
solution is perturbed in an adaptive way, controlled by the jump magnitude
L, i.e., the larger the magnitude L, the stronger the perturbation. Second, the
perturbation attempts to reconstruct a new incumbent solution in a biased
mode, guided by some dedicated information from the high-quality solutions
in the HSP. Finally, the new solution never violates the budget and hop con-
straints and is always a saturated BHS-tree, hence no repair is required and
the search always operates within the saturated constrained search space Ω.

3.5 Discussions

As shown previously, the probabilistic constructive procedure used by our
BLS approach is inspired by the greedy heuristic from Costa et al. (2008) and
provides a natural generalization. In addition, BLS distinguishes itself from
the existing heuristics by several significant features. First, unlike previously
heuristics, BLS follows the iterated local search framework which includes an
adaptive breakout perturbation strategy to escape from local optima. Sec-
ond, with its dedicated neighborhood structure, we ensure that BLS operates
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within a largely reduced and more focused search space, i.e., the saturated
constrained search space Ω. This is in shape contrast with respect to the ex-
isting heuristics which explore usually much larger spaces including unfeasible
or unsaturated solutions. As we show in the next section, the proposed BLS
algorithm equipped with these particular features is able to reach very com-
petitive results with respect to the existing methods in terms of both solution
quality and computational time.

4 Computation results and comparisons

We evaluate our BLS algorithm on a large number of benchmark instances of
the literature and compare our results with the best known published results.
Given that it is difficult to make a really fair comparison of the computa-
tional efforts based on different platforms, we consider the collected revenues
(objective function values) as our main evaluation criterion, and include the
runtime just for indicative purposes. For information, the BLS algorithm is im-
plemented in C++ 1 and executed on an Intel Xeon E5440 2.83GHz processor
(with a peak value of 25.5, according to the Standard Performance Evalua-
tion Corporation via www.spec.org) and 2GB RAM, while an AMD Opteron
machine with 2.39GHz CPU (with a peak value of 18.7) and 2GB RAM was
used in (Costa, 2006; Costa et al., 2008; 2009), and a computer with an Intel
Xeon E5540 2.53GHz processor (with a peak value of 29.4) and 3GB RAM
was used in Sinnl (2011). In order to make the comparisons as fair as possi-
ble, whenever reporting the results corresponding to the reference algorithms,
their CPU times are harmonized with respect to our processor according to
the peak values evaluated by SPEC. Respectively, the CPU times reported in
(Costa, 2006; Costa et al., 2008; 2009) are multiplied by 0.73 (18.7

25.5
), while the

CPU times reported in Sinnl (2011) are multiplied by 1.15 (29.4
25.5

).

4.1 Benchmark instances

We use the 40 challenging benchmark graphs from Costa (2006) and Costa
et al. (2008), which are adapted Steiner graphs from the series C of the OR-
Library 2 (Beasley, 1990). These instances are also used in Costa et al. (2009)

1 The source code of the BLS algorithm is available at http://www.info.

univ-angers.fr/pub/hao/stprbh.html
2 These instances and the solution certificates of our BLS algorithm are avail-
able at http://www.info.univ-angers.fr/pub/hao/stprbh.html. The initial
Steiner graphs are available at http://people.brunel.ac.uk/~mastjjb/jeb/

orlib/steininfo.html
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and Sinnl (2011). Note that for each graph, 6 different scenarios are considered,
leading to 40×6=240 cases. These 240 cases are further classified into 3 groups
as follows.

Group 1: This group contains 60 cases from the first 10 graphs (steinc1 10, . . .,
steinc5 10, steinc1 100, . . ., steinc5 100), all with 500 vertices and 625 edges.

For each graph, 6 different cases associated with different B =

∑
(i,j)∈E

cij

b
and

h, i.e., b = 10, 30 and h = 5, 15, 25, are created. These 60 cases have all been
solved to optimality by exact algorithms, with a time limit of 5256s in Costa
et al. (2009) or 11500s in Sinnl (2011) (after harmonizing by SPEC).

Group 2: This group contains 72 cases from 12 different graphs (steinc8 10,
steinc8 100, steinc9 10, steinc9 100, steinc10 10, steinc10 100, steinc13 10, steinc13 100,
steinc14 10, steinc14 100, steinc15 100, steinc15 100), with 500 vertices and
up to 2500 edges. These cases are rather large and cannot be solved by the
above exact algorithms. However, for 16 special cases, the allowed budget is
abundant enough that it is not difficult for heuristics to reach the upper bound
Rub of the collected revenues (see Eq. (2)). Meanwhile, for the remaining 56
cases, the optimal results still remain unknown. These 56 cases can thus be
considered as the most challenging problems.

Group 3: The last group contains the remaining 108 cases corresponding to the
remaining 18 graphs, with 500 vertices and up to 12500 edges. These cases are
really large scale and no result is reported by any exact algorithm. However,
like the 16 special instances of the second group, for each of these instances,
the allowed budget is abundant enough that heuristics can easily reach the
upper bound of the collected revenues. Hence, these cases have all been solved
to optimality (with collected revenues reaching the upper bound) by previous
heuristics.

It should be mentioned that the four heuristics proposed in Costa et al. (2008),
i.e., greedy, D&R, TS(2000), TS(10000), were evaluated in two different modes.
For each test case, the two deterministic heuristics, i.e., greedy and D&R, were
executed only once, while the two randomized heuristics, i.e., TS(2000) and
TS(10000), were independently run 10 times. Since only the mean computing
time of the 10 runs for TS(2000) and TS(10000) was reported, the total used
time for 10 runs should be multiplied by 10 (we have confirmed this point with
Dr. AM Costa), just as shown in the following Tables. For fair comparisons,
we also evaluate the performance of our BLS algorithm in two different modes,
named Single-BLS and Multiple-BLS respectively. With Single-BLS, we run
our BLS algorithm only once for each test case, while for Multiple-BLS, we
independently run BLS 10 times from different initial solutions generated by
the probabilistic constructive procedure (Section 3.2). The cutoff time for each
independent run is set to 12 minutes (for Single-BLS), thus up to two hours
(12×10 minutes) is allowed for Multiple-BLS.
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Table 1
Parameter settings

Parameters Section Description Values

Lmin 3.4 lower bound of the jump magnitude L 1
Lmax 3.4 upper bound of the jump magnitude L |pv(T )| − 1

Q 3.3.2 number of local optima for constructing the HSP 100
θ 3.2.5 parameter for determining the probability for selecting

and inserting a candidate path
0.3

α 3.4 parameter for setting the threshold of limited distance 0.3
M 3 maximum number of visiting non-improved local optima 100

4.2 Parameters

The six parameters used in our BLS algorithm are given in Table 1. Lmin and
Lmax are respectively the lower and upper bound of the jump magnitude L.
Since L is tuned in an adaptive way (see Section 3.4), we just need to make
sure that Lmin (Lmax) is small (large) enough within a reasonable range. In
this paper, we set Lmin to equal 1, and set Lmax to equal |pv(T )| − 1, where
pv(T ) is the set containing all the profitable vertices of the incumbent solution
T . Apparently, Lmin (Lmax) is the possible minimum (maximum) number of
paths that could be deleted while perturbing the incumbent solution (the root
vertex is not permitted to be deleted). Parameter Q is used to control the
size of the elite solution pool HSP (Section 3.3.2). Preliminary tests show
that when Q ≥ 100, no statistically significant difference (in terms of solution
quality) is observed with different values of Q. Hence we choose 100 as its
default value.
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Fig. 2. Box and whisker plots corresponding to different values of θ ∈ (0, 1] in
terms of solution quality (left sub-figure) and computational time (in seconds, right
sub-figure). X-axis indicates the tested θ values and Y-axis shows the performance.

In addition to these three robust parameters, BLS has three other parameters,
i.e., θ, α, M . Parameter θ determines the probability for selecting a candidate
path to insert to the solution (Section 3.2.5). α is used in the adaptive per-
turbation mechanism to control the distance between the incumbent solution
and the perturbed solution (Section 3.4). M serves as one of the terminal
criteria of BLS (second paragraph of Section 3). Preliminary experiments us-
ing the Friedman test demonstrate that these three parameters are sensitive,
thus deserve a careful tuning. In what follows, we briefly describe how these
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parameters are tuned.

In order to identify an appropriate value for a given parameter, we vary its val-
ues within a reasonable range and compare their performances, while keeping
the other parameters with their default values (as those shown in Table 1). To
compare the results in terms of both solution quality and computation time,
we use the popular box and whisker plots based on a sample of 12 instances
taken (without bias) from the 56 most challenging cases.

For the purpose of conciseness, we take parameter θ as an example and show in
Fig. 2 the box and whisker plots obtained with ten different values θ ∈ (0, 1].
The left sub-figure corresponds to solution quality expressed as the percentage
deviation of the obtained results from the best-known results reported in the
literature, while the right sub-figure concerns computational time. X-axis in-
dicates the tested θ values and Y-axis shows the performance (solution quality
and computational time in seconds). It is clearly observed that small values of
θ (i.e., θ ≤0.5) yield better results than large ones (i.e., θ >0.5). Specifically,
the variant with a deterministic insertion (θ=1.0) which always selects the
path with the highest priority for insertion (Costa et al., 2008) performs the
worst. In addition, we observe that among the variants with θ ≤0.5, BLS with
θ=0.3 performs the best in terms of computation time. Therefore, θ = 0.3 is
used as the default value by BLS.

To tune parameters α and M , we use the same procedure and choose α = 0.3,
M = 100 as their default values.

4.3 Results of the first group of 60 cases

We first consider the first group of 60 cases, corresponding to 10 different
graphs of series C. For these cases which have already been solved to opti-
mality by previous exact algorithms, we summarize in Table 2 (the detailed
results are provided as an appendix in Table 5) the results obtained by our
BLS, with respect to the existing exact or heuristic approaches. In Table 2,
column ’Method’ lists, in addition to our Single-BLS and Multiple-BLS al-
gorithms (last two rows), the reference approaches. The first six approaches,
i.e., S1, S3, S5 (Costa et al., 2009), BP1, BP2, BP3 (Sinnl, 2011) are exact
algorithms, while the following four approaches, i.e., greedy, D&R, TS(2000)
and TS(10000) (Costa et al., 2008) are heuristics. Column ’Success (Opt)’ in-
dicates the number of cases (out of 60) for which the optimal value is reached
by each method. Column ’Fail (Sub-Opt)’ indicates the number of cases where
the corresponding exact approach cannot terminate within the allowed time
(5256 seconds in Costa et al. (2009) and 11500 seconds in Sinnl (2011)) or the
corresponding heuristic approach misses the optimal solutions. Columns ’Mean
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Table 2
Summarized results of the first group of 60 cases

Method Success
(Opt)

Fail
(Sub-Opt)

Mean
Gap

Max
Gap

Mean
Time(s)

Max
Time(s)

Exact S1 59 1 - - 190.38 5256

S3 59 1 - - 250.26 5256

S5 36 24 - - 2164.78 5256

BP1 58 2 - - 766.33 11500

BP2 59 1 - - 443.01 11500

BP3 59 1 - - 376.65 11500

Heuristics Greedy 28 32 9.68% 21.86% 0.02 0.12

D&R 34 26 8.09% 13.77% 2.26 17.51

TS(2000) 29 31 5.36% 11.42% 30.05 53.22

TS(10000) 30 30 4.26% 9.75% 145.55 252.51

Single-BLS 35 25 2.78% 7.82% 17.70 81.22

Multiple-BLS 43 17 1.48% 3.94% 79.51 511.39

Gap’ and ’Max Gap’ respectively list the mean gap (only for the cases missing
the optimal solutions) and maximal gap between the optimal solutions and
the best solutions obtained by each heuristic approach (exact approaches can
always solve the problem to optimality, unless they cannot terminate within
the limited time). Columns ’Mean Time’ and ’Max Time’ present the mean
CPU time and maximal CPU time (in seconds, after harmonizing by SPEC,
so as the follows) used by each method to reach its solutions. For our Single-
BLS and Multiple-BLS algorithms, the preprocessing time (see Section 3.2.1)
is also included, as well as in the following tables.

As shown in Table 2, the previous exact approaches, i.e., S1, S3, S5, BP1, BP2,
BP3 can respectively solve 59, 59, 36, 58, 59, 59 cases to optimality within dif-
ferent time limits (5256s for S1, S3, S5 and 11500s for BP1, BP2, BP3), with a
mean time of 190.38s, 250.26s, 2164.78s, 766.33s, 443.01s, 376.65s, respectively.
On the other hand, the previous heuristics: greedy, D&R, TS(2000), TS(10000)
respectively reach 28, 34, 29, 30 optimal solutions, with a mean time of 0.02s,
2.26s, 30.05s, 145.55s, and with mean gaps 9.68%, 8.09%, 5.36%, 4.26% respec-
tively. For comparison, BLS with a single run (Single-BLS) and multiple runs
(Multiple-BLS) respectively reaches 35 and 43 optimal results out of these 60
cases, with a small mean gap of 2.78% and 1.48%, while consuming a mean
time of 17.70s and 79.51s. Multiple-BLS clearly dominates TS(10000), which
is the best heuristic in Costa (2006) and Costa et al. (2008). It is remarkable
that even Single-BLS performs better than TS(10000) in terms of both solu-
tion quality and computation time, indicating the effectiveness of BLS against
TS. As to the deterministic heuristic D&R, Single-BLS yields much better re-
sults than D&R, but requires more computing time. Finally, as a special case
of our probabilistic constructive procedure, the greedy algorithm (correspond-
ing to θ=1.0) is extremely fast, but for challenging instances, it generally leads
to solutions of inferior quality.
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4.4 Results of the second group of 72 cases

We now show the results of BLS on the second group of 72 cases, corresponding
to 12 different graphs from series C, with 500 vertices and up to 2500 edges.
This group of cases are the most challenging ones of all the three groups of
240 cases, due to two reasons. On one hand, due to their large size, no optimal
result has been reported by any exact algorithm. On the other hand, due to
their strict budget limitation, except 16 special cases with best known results
already reaching the upper bound of the collected revenues, the optimal results
of the remaining 56 cases still remain unknown. Therefore, for these 56 cases,
there is room for improvement with respect to the best known results reported
in the literature.

The results of Single-BLS and Multiple-BLS and those of the reference heuris-
tics (Costa, 2006; Costa et al., 2008) are provided in Table 3. The first three

columns respectively denote the graph name, the budget limit B =

∑
(i,j)∈E

cij

b

and the hop limitation h. The following eight columns list the results reported
by the reference heuristics, i.e., columns 4-7 indicate the collected revenues R
and consumed CPU time t(s) of the two deterministic heuristics: greedy and
D&R, columns 8-11 indicate the best collected revenues Rbest among 10 runs
and the consumed CPU time t(s) of TS(2000) and TS(10000) (after harmo-
nizing by SPEC). Columns 12-13 list the collected revenues R and consumed
CPU time t(s) of Single-BLS. The last 5 columns show the results obtained
by Multiple-BLS, including the best (Rbest) and the average (Ravg) of the col-
lected revenues among 10 runs, the times that Multiple-BLS improves (column√

) or matches (column =) the best known result among the 10 runs, and its
CPU time t(s). The results in bold indicate the best results for each test case,
obtained by all the listed algorithms, while the results in italic indicate that
the results reach the upper bound.

As shown in Table 3, for the 16 cases with the best known results already
reaching the upper bound, Single-BLS and Multiple-BLS can unexception-
ally reach the upper bound within very short time. More importantly, for
the 56 unsolved cases with unknown optimal solutions, Single-BLS (Multiple-
BLS, respectively) succeeds in improving 32 (49) and matching one current
best known results. Statistically, the mean improvement gained by Single-BLS
(Multiple-BLS, respectively) over the best known results on these 72 cases
is 1.34% (3.12%), indicating that BLS produces competitive results for this
group of challenging benchmarks. On the other hand, the mean CPU time
on these 72 cases corresponding to Single-BLS (Multiple-BLS, respectively) is
36.95s (294.62s), while the mean CPU times corresponding to greedy, D&R,
TS(2000), TS(10000) are 0.19s, 29.80s, 55.14s, 258.97s respectively.
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Table 3: Detailed results of the second group of 72 cases.

Instance Greedy D&R TS(2000) TS(10000) Single-BLS Multiple-BLS
Graph b h R t(s) R t(s) Rbest t(s) Rbest t(s) R t(s) Rbest Ravg

√
= t(s)

steinc8 10 20 5 201 0.01 208 1.32 ≤228 14.2 ≤229 65.4 228 9.1 228 224.0 0 0 81.69
steinc8 10 50 5 104 <0.01 104 0.12 ≤116 13.6 ≤116 65.2 113 4.7 116 113.7 0 2 30.95
steinc8 10 20 15 293 0.07 303 9.51 ≤308 42.0 ≤319 206.2 316 17.1 326 316.4 5 0 172.04
steinc8 10 50 15 142 0.04 152 1.91 ≤161 41.6 ≤166 199.1 164 6.8 167 164.1 2 2 34.63
steinc8 10 20 25 294 0.12 311 16.23 ≤310 65.6 ≤319 324.0 319 16.4 328 320.2 6 1 150.98
steinc8 10 50 25 138 0.05 151 3.19 ≤160 63.7 ≤166 311.6 164 10.4 171 165.8 5 1 42.21
steinc8 100 20 5 2102 0.01 2261 1.28 ≤2365 13.5 ≤2368 70.3 2327 17.2 2341 2321.7 0 0 100.73
steinc8 100 50 5 1067 <0.01 1151 0.23 ≤1204 13.5 ≤1220 66.4 1170 5.7 1201 1177.5 0 0 31.26
steinc8 100 20 15 2988 0.07 3269 9.24 ≤3237 43.1 ≤3306 202.8 3255 20.0 3378 3302.7 5 0 204.17
steinc8 100 50 15 1483 0.03 1696 1.88 ≤1675 41.8 ≤1705 199.9 1721 7.4 1763 1717.2 8 0 41.04
steinc8 100 20 25 3302 0.14 3310 16.87 ≤3337 66.8 ≤3340 315.3 3297 24.2 3392 3343.0 6 0 187.76
steinc8 100 50 25 1735 0.06 1735 1.79 ≤1742 64.3 ≤1755 311.0 1620 8.0 1780 1707.1 1 0 42.24
steinc9 10 20 5 270 0.02 274 2.26 ≤279 16.0 ≤283 78.5 280 27.4 284 277.9 1 0 229.10
steinc9 10 50 5 143 0.01 143 0.26 ≤145 16.1 ≤146 76.9 144 5.3 147 144.4 2 1 32.67
steinc9 10 20 15 342 0.08 354 11.35 ≤349 42.4 ≤354 195.7 365 20.4 376 368.6 10 0 162.46
steinc9 10 50 15 160 0.04 172 2.36 ≤165 39.3 ≤169 192.9 176 9.6 181 178.0 9 1 49.24
steinc9 10 20 25 353 0.14 353 9.45 353 63.0 353 309.3 375 29.8 379 375.0 10 0 164.72
steinc9 10 50 25 160 0.05 168 3.70 ≤167 59.1 ≤172 301.2 181 14.1 183 182.1 10 0 47.65
steinc9 100 20 5 2825 0.02 2864 2.24 ≤2933 16.4 ≤2954 77.8 2891 34.4 2921 2862.0 0 0 225.13
steinc9 100 50 5 1492 <0.01 1514 0.50 ≤1509 15.8 ≤1533 83.9 1536 6.5 1536 1506.8 2 0 42.98
steinc9 100 20 15 3568 0.08 3642 11.15 ≤3588 41.5 ≤3631 194.3 3744 31.1 3904 3834.3 10 0 188.66
steinc9 100 50 15 1626 0.04 1675 2.13 ≤1742 38.6 ≤1732 192.7 1852 10.0 1883 1856.9 10 0 54.23
steinc9 100 20 25 3556 0.12 3602 17.26 ≤3644 62.1 ≤3673 309.2 3907 25.8 3926 3891.0 10 0 212.18
steinc9 100 50 25 1626 0.05 1674 3.35 ≤1745 59.4 ≤1753 296.7 1882 16.7 1892 1874.7 10 0 51.18
steinc10 10 20 5 331 0.02 341 2.07 ≤371 14.4 ≤372 68.6 365 31.9 385 381.0 9 0 458.71
steinc10 10 50 5 151 0.01 156 0.39 ≤173 13.9 ≤175 67.7 184 11.6 184 179.5 7 0 62.49
steinc10 10 20 15 488 0.10 505 13.07 ≤505 41.4 ≤509 203.0 535 19.6 545 532.2 10 0 134.52
steinc10 10 50 15 209 0.04 211 2.54 ≤221 40.4 ≤226 198.8 242 17.9 245 241.4 10 0 71.89
steinc10 10 20 25 476 0.16 482 19.86 ≤501 67.2 ≤513 313.8 533 30.0 547 535.9 10 0 102.18
steinc10 10 50 25 210 0.07 219 3.83 ≤218 62.9 ≤229 311.2 247 27.6 254 245.5 10 0 80.70
steinc10 100 20 5 3216 0.02 3530 1.88 ≤3811 15.5 ≤3863 68.3 3896 63.7 4027 3962.8 8 0 463.66
steinc10 100 50 5 1483 <0.01 1513 0.32 ≤1836 14.0 ≤1858 67.9 1918 10.6 1937 1916.5 9 0 84.66
steinc10 100 20 15 5095 0.10 5163 13.30 ≤5227 45.5 ≤5253 202.0 5491 23.4 5687 5572.7 10 0 138.55
steinc10 100 50 15 2356 0.05 2415 2.88 ≤2365 39.7 2356 198.4 2555 16.9 2555 2457.4 7 0 67.17
steinc10 100 20 25 5187 0.18 5287 22.97 ≤5286 64.9 ≤5331 321.3 5542 26.7 5642 5536.5 10 0 131.01
steinc10 100 50 25 2422 0.07 2472 4.66 ≤2432 63.8 2422 311.9 2510 26.6 2511 2483.3 9 0 86.82
steinc13 10 20 5 439 0.10 439 9.80 439 26.9 439 128.6 439 2.9 439 439.0 0 10 15.46
steinc13 10 100 5 236 0.04 242 2.67 ≤243 26.6 ≤246 124.7 240 12.9 248 242.1 1 0 135.87
steinc13 10 20 15 439 0.28 439 29.72 439 79.6 439 330.0 439 4.3 439 439.0 0 10 11.00
steinc13 10 100 15 277 0.13 303 12.57 ≤296 72.8 ≤302 327.4 296 7.3 308 298.7 3 2 56.55
steinc13 10 20 25 439 0.45 439 50.79 439 115.1 439 524.5 439 6.9 439 439.0 0 10 12.74
steinc13 10 100 25 291 0.21 302 22.19 ≤298 107.3≤302 520.3 300 9.1 307 303.1 6 0 46.47
steinc13 100 20 5 4463 0.10 4463 9.82 4463 26.9 4463 126.7 4463 3.0 4463 4463.0 0 10 15.96
steinc13 100 100 5 2421 0.04 2507 2.48 ≤2526 25.9 ≤2544 134.4 2558 16.5 2558 2522.9 3 0 168.50
steinc13 100 20 15 4463 0.28 4463 29.51 4463 73.5 4463 335.3 4463 4.3 4463 4463.0 0 10 10.72
steinc13 100 100 15 2860 0.12 3064 11.64 ≤3029 70.4 ≤3111 326.4 3220 8.7 3236 3152.2 8 0 59.53
steinc13 100 20 25 4463 0.45 4463 51.06 4463 118.14463 541.4 4463 6.3 4463 4463.0 0 10 11.95
steinc13 100 100 25 2991 0.20 3064 22.72 ≤3057 109.8≤3136 521.3 3092 9.6 3248 3168.8 7 0 64.68
steinc14 10 20 5 648 0.15 648 20.01 648 27.7 648 128.2 648 4.7 648 648.0 0 10 25.87
steinc14 10 100 5 339 0.05 344 5.33 339 26.8 ≤341 130.3 366 27.0 367 338.4 4 0 144.91
steinc14 10 20 15 648 0.39 648 55.12 648 75.0 648 319.7 648 6.9 648 648.0 0 10 18.54
steinc14 10 100 15 369 0.15 377 17.72 ≤370 71.4 ≤371 312.7 396 10.4 399 392.5 10 0 47.99
steinc14 10 20 25 648 0.61 648 89.17 648 111.0 648 506.8 648 10.0 648 648.0 0 10 22.02
steinc14 10 100 25 369 0.23 377 28.02 369 101.8≤373 493.2 394 14.4 397 390.7 10 0 58.78
steinc14 100 20 5 6566 0.15 6566 20.59 6566 28.1 6566 127.5 6566 4.9 6566 6566.0 0 10 26.40
steinc14 100 100 5 3364 0.05 3485 5.02 ≤3416 26.3 ≤3503 124.2 3333 26.1 3824 3699.8 8 0 158.45
steinc14 100 20 15 6566 0.39 6566 54.62 6566 74.0 6566 322.1 6566 6.8 6566 6566.0 0 10 18.98
steinc14 100 100 15 3823 0.16 3846 17.32 ≤3872 71.5 ≤3929 312.9 4048 15.2 4122 4063.3 10 0 68.00
steinc14 100 20 25 6566 0.61 6566 90.75 6566 106.76566 507.4 6566 10.7 6566 6566.0 0 10 22.17
steinc14 100 100 25 3823 0.24 3846 27.43 ≤3856 102.2≤3897 495.3 4120 15.7 4120 4073.0 10 0 72.65
steinc15 10 20 5 1162 0.23 1174 79.48 ≤1192 28.9 ≤1211 130.0 1206 758.0 1213 1204.5 2 0 7295.82
steinc15 10 100 5 397 0.07 401 4.94 ≤427 26.2 ≤435 126.4 414 20.3 451 416.8 1 0 196.81
steinc15 10 20 15 1248 0.78 1248 179.23 1248 78.6 1248 336.0 1248 17.7 1248 1248.0 0 10 68.00
steinc15 10 100 15 493 0.19 515 23.48 ≤501 71.0 ≤502 324.1 545 21.4 548 540.7 10 0 93.39
steinc15 10 20 25 1248 1.22 1248 281.76 1248 118.61248 524.4 1248 21.7 1248 1248.0 0 10 65.99
steinc15 10 100 25 510 0.31 520 38.60 510 107.7 510 506.6 539 26.4 546 540.4 10 0 77.24
steinc15 100 20 5 11963 0.23 12078 83.31 ≤1219828.5 ≤12306131.5 12121 752.6 12213 12106.9 0 0 7023.82
steinc15 100 100 5 4108 0.06 4180 5.17 ≤4358 27.1 ≤4379 125.9 4378 23.6 4378 4268.3 0 0 271.20
steinc15 100 20 15 12533 0.81 12533 183.24 12533 74.5 12533 333.5 12533 16.8 12533 12533.0 0 10 71.29
steinc15 100 100 15 5153 0.20 5355 24.04 ≤5177 70.8 ≤5159 326.6 5642 21.2 5770 5642.7 10 0 106.43
steinc15 100 20 25 12533 1.24 12533 298.06 12533 118.812533 555.2 12533 24.3 12533 12533.0 0 10 76.11
steinc15 100 100 25 5243 0.30 5393 41.07 5243 106.7≤5274 524.9 5663 27.1 5703 5655.3 10 0 110.16
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Specifically, statistical results show that Multiple-BLS gains a mean improve-
ment of 3.44% over TS(10000), while consuming nearly the same mean CPU
time. Furthermore, Single-BLS leads to a mean improvement of 1.66%, 2.66%,
4.01% over TS(10000), TS(2000), and D&R, respectively, while consuming
much less CPU time than TS(10000), TS(2000), and about 23% more CPU
time than D&R. Finally, we do not directly compare BLS with the greedy
heuristic, given that it is a special case of our probabilistic constructive pro-
cedure for initialization.

In addition, from Table 3, we see that Multiple-BLS performs very well for the
cases with large h, but fails to match the best known results of six cases with a
very small hop limitation, i.e., h = 5. One explanation is that when h is very
small, cycles frequently occur after inserting a new path to the incumbent
solution. In this case, the proposed algorithm should detect and eliminate
cycles efficiently. Our current version of BLS perhaps does not deal well with
this special situation, which merits certainly further research.

4.5 Results of the third group of 108 cases

The last group of 108 large cases from 18 graphs of series C have 500 vertices
and up to 12500 edges. They are too large to be solved by the existing exact
algorithms. However, as described in Section 4.1, all the cases of this group
have large budgets so that several heuristics can reach the upper bound of
the collected revenues. Indeed, these cases have all been solved to optimality
by previous heuristics. Like for the first group, we summarize the existing
results and our results in Table 4 (the detailed results are provided as an
appendix in Table 6). The meaning of each column in Table 4 is similar to
that of Table 2. From Table 4, one observes that the previous heuristics: greedy,
D&R, TS(2000), TS(10000) respectively miss four, zero, two, and two optimal
results out of the 108 cases, while Single-BLS and Multiple-BLS respectively
miss one and zero optimal result with much less computing times than the
main reference heuristics TS(10000), TS(2000), and D&R.

Table 4
Summarized results of the third group of 108 cases

Method Opt Sub-Opt Mean Time(s) Max Time(s)

Greedy 104 4 3.01 23.20

D&R 108 0 485.82 4740.33

TS(2000) 106 2 676.26 2099.77

TS(10000) 106 2 3599.84 12180.78

Single-BLS 107 1 20.47 744.71

Multiple-BLS 108 0 125.78 5757.81

22



5 Conclusion

We have proposed a Breakout Local Search (BLS) algorithm for the Steiner
tree problem with revenue, budget and hop constraints (STPRBH), which can
model a number of network designing problems. The proposed BLS approach
relies on a probabilistic constructive procedure for initialization, a neighbor-
hood search procedure based on several specifically designed move operators
for local optimization, and an adaptive breakout perturbation mechanism for
escaping from local optima. Experiments based on three groups of 240 repre-
sentative benchmarks from the literature demonstrate that BLS is a competi-
tive algorithm for the STPRBH, compared to previous proposed approaches.
For the 184 cases with known optimal solutions, BLS can attain an optimal
result for 167 cases (90.8%) within short computing time. More importantly,
for the 56 most challenging cases with unknown optimal solutions, BLS finds
49 improved solutions and matches one more best known results within rea-
sonable time. Nevertheless, BLS misses the best known solutions for six cases,
in particular with very small hop limitations.

The work described in this paper can be further extended by following several
directions: (1) design specific techniques to deal with the cases with very
small hop limitations, (2) investigate other move operators and perturbation
strategies, (3) combine BLS with a population-based method like the memetic
framework, and (4) adapt the ideas of this research to other STP variants.
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Appendix

Herein, we provide as appendices in Table 5 and Table 6 the results obtained by
our BLS (Single-BLS, Multiple-BLS respectively) for the first and third group
of test cases (each row lists two cases, corresponding to the same graph and

the same hop constraint h, but different budget constraint B =

∑
(i,j)∈E

cij

b
). In

Table 5, column ’Opt’ indicates the optimal results obtained by previous exact
algorithms, while in Table 6, column ’UB’ indicates the upper bound of the
collected revenues calculated by Eq.(2). The meanings of the other columns
are similar to the ones in Table 3.

Table 5
Detailed results obtained by BLS for the first group of 60 cases

Information Single-BLS Multiple-BLS Information Single-BLS Multiple-BLS
Graph b h Opt R t(s) Rbest t(s) b h Opt R t(s) Rbest t(s)

steinc1 10 10 5 8 8 0.48 8 2.84 30 5 8 8 0.48 8 2.84
steinc1 10 10 15 27 27 0.84 27 3.36 30 15 27 27 0.84 27 3.36
steinc1 10 10 25 27 27 1.18 27 3.70 30 25 27 27 1.19 27 3.71
steinc1 100 10 5 71 71 0.48 71 2.83 30 5 71 71 0.48 71 2.83
steinc1 100 10 15 274 274 0.84 274 3.36 30 15 274 274 0.84 274 3.36
steinc1 100 10 25 274 274 1.18 274 3.71 30 25 274 274 1.18 274 3.70
steinc2 10 10 5 32 32 0.70 32 3.18 30 5 32 32 0.70 32 3.18
steinc2 10 10 15 59 59 1.41 59 4.11 30 15 53 51 1.71 53 6.81
steinc2 10 10 25 59 59 2.09 59 4.78 30 25 53 51 2.34 53 7.84
steinc2 100 10 5 328 328 0.71 328 3.20 30 5 328 328 0.71 328 3.20
steinc2 100 10 15 604 604 1.41 604 4.12 30 15 546 533 1.73 546 7.29
steinc2 100 10 25 604 604 2.09 604 4.78 30 25 546 533 2.31 546 8.70
steinc3 10 10 5 151 151 4.14 151 9.19 30 5 95 95 5.56 95 22.79
steinc3 10 10 15 289 273 26.68 288 142.18 30 15 129 120 13.66 129 46.00
steinc3 10 10 25 289 288 29.29 288 135.84 30 25 129 129 17.93 129 50.43
steinc3 100 10 5 1519 1519 4.16 1519 9.27 30 5 968 968 5.95 968 23.14
steinc3 100 10 15 2971 2970 32.45 2970 173.42 30 15 1343 1238 12.47 1343 54.65
steinc3 100 10 25 2979 2936 28.31 2969 163.84 30 25 1343 1255 18.81 1296 59.89
steinc4 10 10 5 115 115 5.85 115 10.01 30 5 84 84 6.42 84 17.46
steinc4 10 10 15 336 333 81.22 335 405.63 30 15 134 133 23.93 134 79.60
steinc4 10 10 25 341 325 50.51 335 391.64 30 25 136 134 28.92 136 86.94
steinc4 100 10 5 1148 1148 5.87 1148 10.00 30 5 854 854 7.32 854 17.19
steinc4 100 10 15 3458 3390 64.33 3456 511.40 30 15 1380 1345 20.34 1376 86.58
steinc4 100 10 25 3504 3420 63.17 3432 402.54 30 25 1396 1336 27.35 1396 102.45
steinc5 10 10 5 258 258 11.94 258 21.96 30 5 154 154 12.64 154 34.88
steinc5 10 10 15 494 467 40.26 478 184.86 30 15 182 181 44.60 182 174.50
steinc5 10 10 25 495 479 55.83 482 226.52 30 25 183 178 53.60 181 205.71
steinc5 100 10 5 2600 2600 11.97 2600 22.05 30 5 1584 1584 14.59 1584 36.68
steinc5 100 10 15 5032 4814 47.45 4834 218.37 30 15 1857 1830 41.08 1837 146.83
steinc5 100 10 25 5044 4808 56.92 4875 211.56 30 25 1860 1845 61.34 1845 173.53
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Table 6
Detailed results obtained by BLS for the third group of 108 cases

Information Single-BLS Multiple-BLS Information Single-BLS Multiple-BLS
Graph b h UB R t(s) Rbest t(s) b h UB R t(s) Rbest t(s)

steinc6 10 20 5 27 27 0.50 27 3.13 50 5 27 27 0.50 27 3.13
steinc6 10 20 15 27 27 0.84 27 3.43 50 15 27 27 0.85 27 3.44
steinc6 10 20 25 27 27 1.17 27 3.76 50 25 27 27 1.19 27 3.78
steinc6 100 20 5 274 274 0.50 274 3.13 50 5 274 274 0.50 274 3.13
steinc6 100 20 15 274 274 0.84 274 3.43 50 15 274 274 0.84 274 3.43
steinc6 100 20 25 274 274 1.18 274 3.77 50 25 274 274 1.18 274 3.77
steinc7 10 20 5 49 49 0.75 49 3.65 50 5 49 49 0.90 49 5.22
steinc7 10 20 15 59 59 1.43 59 4.27 50 15 59 59 1.49 59 5.18
steinc7 10 20 25 59 59 2.10 59 4.94 50 25 59 59 2.18 59 5.81
steinc7 100 20 5 503 503 0.75 503 3.66 50 5 503 503 0.95 503 5.55
steinc7 100 20 15 604 604 1.42 604 4.27 50 15 604 604 1.50 604 5.21
steinc7 100 20 25 604 604 2.11 604 4.95 50 25 604 604 2.22 604 5.82
steinc11 10 20 5 27 27 0.50 27 3.11 100 5 27 27 0.50 27 3.11
steinc11 10 20 15 27 27 0.85 27 3.42 100 15 27 27 0.85 27 3.43
steinc11 10 20 25 27 27 1.18 27 3.76 100 25 27 27 1.17 27 3.75
steinc11 100 20 5 274 274 0.50 274 3.11 100 5 274 274 0.50 274 3.11
steinc11 100 20 15 274 274 0.84 274 3.41 100 15 274 274 0.85 274 3.43
steinc11 100 20 25 274 274 1.17 274 3.75 100 25 274 274 1.18 274 3.76
steinc12 10 20 5 59 59 0.76 59 3.78 100 5 59 59 0.77 59 3.79
steinc12 10 20 15 59 59 1.43 59 4.30 100 15 59 59 1.43 59 4.30
steinc12 10 20 25 59 59 2.11 59 4.99 100 25 59 59 2.11 59 4.98
steinc12 100 20 5 604 604 0.76 604 3.77 100 5 604 604 0.76 604 3.78
steinc12 100 20 15 604 604 1.42 604 4.30 100 15 604 604 1.43 604 4.30
steinc12 100 20 25 604 604 2.10 604 4.97 100 25 604 604 2.11 604 4.98
steinc16 10 100 5 27 27 0.51 27 3.11 200 5 27 27 0.51 27 3.12
steinc16 10 100 15 27 27 0.85 27 3.43 200 15 27 27 0.84 27 3.42
steinc16 10 100 25 27 27 1.19 27 3.77 200 25 27 27 1.18 27 3.77
steinc16 100 100 5 274 274 0.51 274 3.10 200 5 274 274 0.51 274 3.11
steinc16 100 100 15 274 274 0.85 274 3.43 200 15 274 274 0.84 274 3.42
steinc16 100 100 25 274 274 1.18 274 3.77 200 25 274 274 1.19 274 3.77
steinc17 10 100 5 59 59 0.77 59 3.72 200 5 59 59 0.77 59 3.71
steinc17 10 100 15 59 59 1.44 59 4.25 200 15 59 59 1.44 59 4.26
steinc17 10 100 25 59 59 2.12 59 4.95 200 25 59 59 2.12 59 4.96
steinc17 100 100 5 604 604 0.77 604 3.72 200 5 604 604 0.77 604 3.76
steinc17 100 100 15 604 604 1.45 604 4.29 200 15 604 604 1.44 604 4.28
steinc17 100 100 25 604 604 2.12 604 4.94 200 25 604 604 2.12 604 4.94
steinc18 10 100 5 439 439 5.98 439 27.06 200 5 439 439 5.96 439 27.03
steinc18 10 100 15 439 439 10.49 439 20.77 200 15 439 439 10.46 439 20.77
steinc18 10 100 25 439 439 16.11 439 26.35 200 25 439 439 16.09 439 26.33
steinc18 100 100 5 4463 4463 5.97 4463 26.93 200 5 4463 4463 6.01 4463 26.96
steinc18 100 100 15 4463 4463 10.48 4463 20.90 200 15 4463 4463 10.49 4463 20.93
steinc18 100 100 25 4463 4463 16.09 4463 26.45 200 25 4463 4463 16.13 4463 26.50
steinc19 10 100 5 648 648 9.70 648 46.79 200 5 648 648 9.60 648 46.77
steinc19 10 100 15 648 648 16.00 648 33.62 200 15 648 648 16.03 648 33.75
steinc19 10 100 25 648 648 24.51 648 41.91 200 25 648 648 24.37 648 41.68
steinc19 100 100 5 6566 6566 9.69 6566 48.38 200 5 6566 6566 9.74 6566 48.23
steinc19 100 100 15 6566 6566 16.07 6566 34.81 200 15 6566 6566 16.01 6566 34.79
steinc19 100 100 25 6566 6566 24.41 6566 42.70 200 25 6566 6566 24.65 6566 43.03
steinc20 10 100 5 1248 1248 31.45 1248 216.07 200 5 1248 1248 744.71 1248 5757.81
steinc20 10 100 15 1248 1248 36.35 1248 110.67 200 15 1248 1248 36.16 1248 110.39
steinc20 10 100 25 1248 1248 52.90 1248 123.37 200 25 1248 1248 53.09 1248 123.74
steinc20 100 100 5 12533 12533 32.40 12533 225.40 200 5 12533 12532 628.25 12533 5331.57
steinc20 100 100 15 12533 12533 37.02 12533 120.13 200 15 12533 12533 37.38 12533 120.95
steinc20 100 100 25 12533 12533 53.77 12533 132.44 200 25 12533 12533 53.40 12533 131.88
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