1. The Problem of Dummy Dependent Variables

- You already learned about dummies as independent variables. But what do you do if the dependent variable is a dummy?
- One answer is: Logistic regression
- Of course, you could also run OLS, which, however, has obvious limitations.

Figure 1: OLS in Dummy Dependent Estimation
• Problems with OLS when the dependent variable is a binominal dummy are:
• The error term is obviously not normally distributed. The error term is heteroskedastic.
• R-squared becomes a useless measure
• Most importantly, the model is problematic for forecasting purposes. One would like to forecast the probability of a certain set of independent variables to create a certain binominal outcome. OLS could create probabilities of greater than one or smaller than zero.
• Logistic regression is a non-linear estimation technique, which solves the problem of unboundedness of OLS.

2. The Logit - Model

• The Logit-Model is defined as:

\[
LN\left(\frac{P_i}{1-P_i} \right) = \beta_0 + \beta_1 \cdot X_i + \beta_2 \cdot X_2 + \varepsilon \quad \text{(1)}
\]

• It is based on the cumulative logistic distribution
• (1) can be rearranged to:

\[P_i = \frac{1}{1 + e^{-[\beta_0 + \beta_1 \cdot X_i + \beta_2 \cdot X_2 + \varepsilon]}} \]

(2)

• How?

• Define

\[
\begin{aligned}
\ln \left(\frac{P}{1-P} \right) &= Z & \text{Take Antilog} \\
\frac{P}{1-P} &= e^Z & \text{Times (1-P)} \\
P &= e^Z - Pe^Z & \text{Divide by P} \\
1 &= \frac{e^Z}{P} - e^Z & \text{Plus } e^Z \\
1 + e^Z &= \frac{e^Z}{P} & \text{Take inverse} \\
\frac{1}{1+e^Z} &= \frac{P}{e^Z} & \text{Multiply by } e^Z \\
P &= \frac{e^Z}{1+e^Z} & \text{Expand right side by } \frac{e^{-Z}}{e^{-Z}} \\
P &= \frac{1}{1+e^{-Z}}
\end{aligned}
\]

• Thus,

\[
\begin{aligned}
\ln \left(\frac{P_i}{1-P_i} \right) &= \beta_0 + \beta_1 \cdot X_i + \beta_2 \cdot X_2 + \varepsilon \\
\text{or } P_i &= \frac{1}{1 + e^{-[\beta_0 + \beta_1 \cdot X_i + \beta_2 \cdot X_2 + \varepsilon]}}
\end{aligned}
\]
• If $Z \to 0 \Rightarrow P_i \to 0$ and if $Z \to \infty \Rightarrow P_i \to 1$

• Therefore, logistic regression solves the unboundedness problem of OLS.

Figure 2: Logistic Regression

• You will also encounter Probit models. Their idea is similar to the logit. The only difference is that the probit estimates are derived out of the cumulative normal distribution.

• In practice, either method yields pretty identical results.
3. Interpretation

- A positive coefficient in estimating

\[
LN\left(\frac{P_i}{1 - P_i} \right) = \beta_0 + \beta_1 \cdot X_i + \beta_2 \cdot X_2 + \varepsilon
\]

tells you that as \(X_i \) increases, the likelihood that the DV takes the value 1 increases.

- Most statistical software packages actually calculate the probability \(P_i \)

- Statistical software packages also report the so-called odds ratio. If it is positive, \(P_i > 0.5 \); if it is negative \(P_i < 0.5 \). An odds ratio of 2:1 (2), for example, tells you that \(P_i = 0.66 \); and an odds ratio of 1:2 (0.5), that \(P_i = 0.33 \).
4. Example: War Risk

- Upload the dataset “War.xls,” which classifies countries as a war country if they had at least one year of armed conflict between 1960 and 2005.
- The other variables are per capita income in (2000 USD, ln), Polity (a measure of democracy), income inequality, manufacturing export share (% of GDP), and Muslim Christian Polarization (the likelihood of obtaining a Muslim and a Christian in a random drawing from the population).
- The dataset also contains neighborhood effects for the regions DivMENA (diversified economies of the Middle East), OilMENA (oil economies of the Middle East), Sub Saharan Africa (SSA), Latin America and the Caribbean (LAC), South Asia (SA), East Asia and the Pacific (EAP), East Asian Tigers (EAT), North America (NAM), Western Europe (WE), and Eastern and Central Europe (ECE).
- The neighborhood effects are population weighted regional polity and regional oil (fuel exports as a percentage of GDP).
- It also contains the number of refugees per 100,000 (RegRef).
• A look at some scatter plots is useful to see why OLS is problematic with dummy dependent variables.

• The dependent variable is always “War Country” while the independent variables are per capita income (ln), polity, inequality, and manufacturing export shares respectively.

• In all cases the predicted value are difficult to interpret, especially in the case of “War Country vs. Manufacturing,” which illustrates the problem of unboundedness.
- Logistic regression is more meaningful.

The above scatter plots are generated as follows. Go to Model → Nonlinear models → Logit → Binary. The dependent variable is “War Country.” The independent variable is, for example, per capita income. Run the model. Save the fitted values. Create scatter plot of “Fitted value vs. Income.”
• Reporting logistic regression results.

• Model

\[\ln \left(\frac{WarCtry}{NoWarCtry} \right) = \beta_0 + \beta_1 Inc_i + \beta_2 Polity_i + \beta_3 Ineq_i + \beta_4 Manu_i + \epsilon_i \]

• Regression results (Example)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>5.35</td>
<td>0.61</td>
<td>-3.52</td>
<td>1.00</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>(<0.01)</td>
<td>(<0.01)</td>
<td>(<0.01)</td>
<td>(<0.01)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>LnYCAP</td>
<td>-0.68</td>
<td></td>
<td></td>
<td></td>
<td>-0.53</td>
</tr>
<tr>
<td></td>
<td>(<0.01)</td>
<td></td>
<td></td>
<td></td>
<td>(<0.01)</td>
</tr>
<tr>
<td>POLITY</td>
<td></td>
<td>-0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(<0.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INEQ</td>
<td></td>
<td></td>
<td>0.09</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(<0.01)</td>
<td></td>
<td>(0.09)</td>
</tr>
<tr>
<td>MANU</td>
<td></td>
<td></td>
<td></td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(<0.01)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>182</td>
<td>160</td>
<td>152</td>
<td>176</td>
<td>145</td>
</tr>
<tr>
<td>% Class.</td>
<td>70.9%</td>
<td>70.6%</td>
<td>69.7%</td>
<td>67.0%</td>
<td>73.1%</td>
</tr>
</tbody>
</table>

• There is obviously a multicollinearity problem between inequality, polity, and manufacturing.

• Policy simulation: Assume Lebanon has today a per capita income of $5,000 and a Gini coefficient of 60. What is Lebanon’s war country likelihood? By how much would Lebanon’s level of inequality be reduced in order to drive the war country likelihood below 50%?
5. Truncated Data and Logistic Regression

- Logistic regression, which underlies the logit model, can also be applied to data which is “somehow cut off.”
- Such cut off data is called truncated or censored.
- Truncated data causes a truncation bias, which makes the trend line “flatter” than it would be if the data was normally distributed.

<table>
<thead>
<tr>
<th>Non-truncated data</th>
<th>Truncated data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A striking empirical regularity is that the maximum
- Dividing the OLS estimates by the proportion of non-limit observations in the sample is a common “practitioner’s solution” to correct for this bias (Greene (2003): Econometric Analysis, p. 768).
- However, an even better model would be again a non-linear fit, similar to the logit model.
• An example for truncated data is the “Polity” dataset which takes values between -10 (Autocracy) and +10 (Democracy).

• Running from the “War.xls” dataset Polity on per capita income (LnYCAP) yields the following scatter plot.

• Scatter Plot of “Polity” (truncated) on “Per Capita Income”
• Running from the “War.xls” dataset Polity on per capita income (LnYCAP) yields the following scatter plot.

![Gretl Model 2](image)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-16.3625</td>
<td>-8.176</td>
<td>1.11e-013 ***</td>
</tr>
<tr>
<td>LnYCAP</td>
<td>2.23379</td>
<td>8.252</td>
<td>7.17e-014 ***</td>
</tr>
</tbody>
</table>

Mean dependent var: -0.165359 S.D. dependent var: 5.961394
Sum squared resid: 3723.050 S.E. of regression: 4.965477
R-squared: 0.310777 Adjusted R-squared: 0.306213
F(1, 151) = 68.08739 P-value (F) = 7.17e-14
Log-likelihood: -461.2749 Akaike criterion: 926.5499
Schwarz criterion: 932.6107 Hannan-Quinn: 929.0119

• A closer look at the data reveals that out of the 153 observations, 20 observations are limit observations (reproduce this result in excel), which gives a percentage of non-limit observations of (133/153=87%).

• The truncation-adjusted coefficient would therefore be 2.22/0.87=2.55.

• Instead of running a linear regression, truncated data is always a natural candidate for logistic regression.
• When running a logistic regression on truncated data, it is necessary to transform the data first such that that all values of the dependent variable are positive.

• It is recommended to add to the dependent variable the minimum plus one, which is eleven in the case of Polity.

• In running a logistic regression with truncated data, “gretl” also will ask you to specify the asymptotic maximum, which in the case of Polity is now 21.

• For computational reasons, the asymptotic must be slightly above the maximum value, for example, 21.001

• In gretl you open the logistic regression module in Model ➔ Nonlinear models ➔ Logistic

• The regression results are summarized below.

• A comparison of the adjusted R^2 shows that the logistic regression is a much better fit, increasing the R^2 by almost 7 percentage points.
• Logistic regression results

<table>
<thead>
<tr>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-0.52619</td>
<td>1.13518</td>
<td>-0.334</td>
</tr>
<tr>
<td>LnYCAP</td>
<td>1.45661</td>
<td>0.152675</td>
<td>9.526</td>
</tr>
</tbody>
</table>

Statistics based on the transformed data:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>Description</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum squared resid</td>
<td>1197.987</td>
<td>S.E. of regression</td>
<td>2.816601</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.375477</td>
<td>Adjusted R-squared</td>
<td>0.371341</td>
</tr>
<tr>
<td>F(1, 151)</td>
<td>90.78452</td>
<td>P-value(F)</td>
<td>3.85e-17</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-374.5216</td>
<td>Akaike criterion</td>
<td>763.0631</td>
</tr>
<tr>
<td>Schwartz criterion</td>
<td>759.1240</td>
<td>Hannan-Quinn</td>
<td>785.8251</td>
</tr>
</tbody>
</table>

Statistics based on the original data:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>Description</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean dependent var</td>
<td>10.51256</td>
<td>S.D. dependent var</td>
<td>6.017572</td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>6854.025</td>
<td>S.E. of regression</td>
<td>6.787277</td>
</tr>
</tbody>
</table>

• Scatter plot “Actual vs. Predicted” using logistic regression
6. Further Readings

Dummy dependent estimation techniques are nicely explained in the following texts:

