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Abstract


In this paper, we will deal with the Representation and the Symbolic Management of Uncertain statements of the natural Language. The Symbolic Uncertainty Management Model  presented here uses a M-valued Logic and also a Symbolic Probability Theory. The natural concepts of Uncertainty and Conditional Statement are represented with the aid of symbolic generalizations of the classical notions of Probability and Conditional Probability. For inferential processes, we use symbolic extensions of classical inferential deductive and probabilistic processes. The results given here show that a Symbolic Probability Theory can constitute a satisfying model of explicit management of Uncertainty of natural Language encoded in a qualitative way. Moreover, we will show that it is possible to choose valuation scales of different sizes leading to results coherent one with the others.
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�
1. Introduction


We present here some results using a Symbolic Probability Theory as a Representation and Management Model of the Uncertain statements of the Natural Language. Numerous studies have been devoted to this fundamental problem of Artificial Intelligence in the field of Conception of Systems simulating some activities of a cognitive agent. The Uncertainty Representation leads us to find an adequate  formalism of representation of natural Concepts that are Certainty and Conditional Statements, and of the inferential processes enabling to make deductions fitting those of a cognitive agent. The approach developped here is Qualitative ; thus, no Numerical computing will  be found. During the last ten years, the Qualitative approach of Uncertainty has strongly evolved. Some methods use Heuristic processes (Cf. [Cohe85]), others are based on "qualitative" or "comparative" Probabilities (Cf. [Bobr84], [Will86], [Stru88], [Davi90], [Well90], [HeDr91], [CGSc91], [Gold92], [GoPe92], [DrHe93], [PaDo93], [Pars93]). These last years, a new Probability concept, viewed as a Symbolic extension of the classical concept of Probability has been studied in order to represent symbolically  the Uncertainty in the Bayesian Networks or the Uncertainty of statements of the natural Language.  It has already lead to the elaboration of many Symbolic Probability Theories (Cf. [Pear88(a), (b), [Alel88,90], [XBPo90], [HaFa92], [ADGP92], [DaGi92], [Darw92], [Pacd92(a), (b), 93], [Pool93], Pacd94(a), (b)],[PaPH95]).


The symbolic Probability Theory used here has already been proposed by �D. Pacholczyk. The semantic model to which we refer (Cf. [Pacd93, Pacd94(a), (b), Pacd95]), is built upon a substrate of a M-valued Predicate Logic that has a better expressive power (Cf. [Pool91]) and allows a better account of the notion of Uncertainty. Moreover, it also allows the Management of Uncertainty and Vagueness, both expressed in a qualitative way (Cf. [Pacd92(a)]). More, the proposed inferential processes may be of deductive type or of conditional type. So, they give rules for propagation and combination of the Uncertainty not restricted to symbolic extensions of bayesian processes. Let's say also that this theory, taking also into account the Conditional Independence approach encoded in a Symbolic way, can also be used in the framework of a Symbolic Approach of Bayesian Networks (Cf. Pacd94(a), (b)]).


In this paper, we study also the adequation of this theory to the Representation and the Management of the Uncertainty of the statements of the natural Language expressed in a Qualitative way. Let's recall that the psychologists consider that the symbolic graduation can not be reasonnably apprehended by man above ten degrees (Cf. [LeNy87], [MaOv90], [RBGh90]). A first scale of degrees of Truth enables to express the graduation of the Vagueness. For instance, stating that "Smith is very tall" is equivalent to say that Smith satisfies the predicate Tall to the degree very. A second scale of Uncertainty degrees, distinct from the first, is used to express the graduation of the Uncertainty. Thus, stating that "it is rather probable that Smith be a very rich man" is equivalent to say that "Smith is a very rich man" satisfies the predicate Probable to the degree rather. In order to reach this goal, the used M-valued Predicate Logic, which has been conceived to manage the vague predicates, has been enriched with a particuliar predicate, noted Prob that takes into account the satisfaction of the concept of Certainty. This particuliar predicate must satisfy a set of semantic axioms translating the minimal rules that govern the concept of Certainty. We then obtain a semantic model of the Uncertainty Management having both the representation of its graduation and the basic rules governing its management. Aiming to clear the presentation of the basic concepts of the model and of the use theorems, all the definitions and all the results will be translated with the aid of a certainty function of statements, called Cert�. 


Thus, the statement� : it is rather probable that Smith be a very rich man, whose formal translation is �CARSPECIAUX 100 \f "Lucida Bright Math Symbol"� �CARSPECIAUX 235 \f "Lucida Bright Math Symbol"�ratherProb(Smith is a very rich man), will be expressed under the following form : Cert(Smith is a very rich man) = rather (Probable). Before giving the postulates of this function Cert, we will introduce some symbolic operators that are the counterparts of the classical operations of the numerical probability theory. Then we will define Cert and  show how Uncertainty can be managed within this Logico-symbolic Probability Theory. Our point here is to present briefly our theory and to emphasise both on Uncertainty and on the applications to (almost) real cases. Section 2 will deal with the theoretical framework and Section 3 will provide two examples written in Natural Language treated with the formulas and rules from Section 2. It is important to note that, no example can be numerically approached because of the uncertainty of the knowledge. Therefore, our aim in Section 4 will be to discuss about the size of the model (�\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��5,�\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��7...) and the different possible values in a chosen model, showing that an overlapping series of results can be found for any value of M.


2 The model


In many situations, a human being knows that a statement is either true or false but is unable to decide the correct value. He can, at the most, give some "qualitative coefficient" expressing to what point he will prefer its truth rather than its negation. He will then handle a concept of Certainty (noted linguistically probable), in order to express the graduation v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� of his certainty in statements such as "A is v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� probable". It is a many-valued predicate, denoted by Prob having as argument a Boolean proposition A so our study is set in the framework of a multivalent first order Logic. More, this predicate can not have an infinite number of values, because this infinity presupposes, to be evaluated, a big quantity of information. The cognitive agent has only a partial knowledge of the Truth, and so the evaluation of the uncertainty related to a statement can only be a "discrete approximation", which will be symbolic instead of numerical. We will use a graduation scale �\CARSPECIAUX 101 \f "Lucida Bright Math Symbol"��M = {v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��,�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� = 1,...M} composed of M symbolic value, totally ordered by the relation : v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� �\CARSPECIAUX 163 \f "Symbol"�� v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"�� �\CARSPECIAUX 219 \f "Symbol"�� �\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� �\CARSPECIAUX 163 \f "Symbol"�� �\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��. For example, with M = 7, we can propose as linguistic translation of these symbolic degrees the expressions given in Table 1�.


Table 1 : A graduation scale �\CARSPECIAUX 101 \f "Lucida Bright Math Symbol"��7





v1�
v2�
v3�
v4�
v5�
v6�
v7�
�
impossible�
very-little_probable�
little_probable�
probable�
rather_probable�
very_probable�
certain�
�



2.1 Justification of the choice of the symbolic operators �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"�� and n


We now justify progressively the algebraic construction of our model. Let �\CARSPECIAUX 102 \f "Lucida Bright Math Symbol"�� the set of Boolean statements in the language of the predicates for a given interpretation �\CARSPECIAUX 100 \f "Lucida Bright Math Symbol"��. Let's call T a tautology and �\CARSPECIAUX 198 \f "Symbol"�� an antilogy. In classical probabilities, a function Pr of �\CARSPECIAUX 102 \f "Lucida Bright Math Symbol"�� into [0,1] defines a Probability Measure if it verifies the three axioms : [A1] Pr(�\CARSPECIAUX 198 \f "Symbol"��)=0 ;  [A2] Pr(T)=1 ; [A3]  Pr(A�\CARSPECIAUX 200 \f "Symbol"��B)=Pr(A)+Pr(B) if A�\CARSPECIAUX 199 \f "Symbol"��B=�\CARSPECIAUX 198 \f "Symbol"��. It then gives [A4] Pr(�\CARSPECIAUX 216 \f "Symbol"��A)=1- Pr(A). To generalize, we introduce a symbolic additive operator �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"�� with properties analogous to that of the "probabilistic addition". 


�
In the set �\CARSPECIAUX 101 \f "Lucida Bright Math Symbol"��M, the operator �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"�� must verify :


[S1] : �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��,v1) =  v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��  (neutral element) ;  [S2] : �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��,v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��) =  �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��,v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��)	(commutativity) ;�[S3] : �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��,�\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��,v�\CARSPECIAUX 46 \f "Lucida Bright Math Italic"��)) =  �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(�\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��,v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��),v�\CARSPECIAUX 46 \f "Lucida Bright Math Italic"��)	(associativity) ;�[S4] : { v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� �\CARSPECIAUX 163 \f "Symbol"�� v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"�� and v�\CARSPECIAUX 46 \f "Lucida Bright Math Italic"�� �\CARSPECIAUX 163 \f "Symbol"�� v�\CARSPECIAUX 47 \f "Lucida Bright Math Italic"�� } �\CARSPECIAUX 222 \f "Symbol"��   �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��,v�\CARSPECIAUX 46 \f "Lucida Bright Math Italic"��)  �\CARSPECIAUX 163 \f "Symbol"�� �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic" \s 8��,v�\CARSPECIAUX 47 \f "Lucida Bright Math Italic" \s 8��)	(increasing property) ; 


Any symbolic T-conorm fulfils the properties  [S1] to [S4]. It verifies also the condition [S5] : �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(vM,vM)=vM. The choice of �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"�� is not unique. We have taken the following T-conorm �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"�� : �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��,v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��) = vM if �\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��+�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"�� �\CARSPECIAUX 179 \f "Symbol"�� M+1 else v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��+�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��-1. It is the symbolic T-conorm associated to Lukasiewicz's implication (Cf. [Pacd[92(a), (b)]). This choice is not innocent. Actually, we work in a M-valued predicate Logic using this implication.�


The Property [A4] also reads : Pr (A) + Pr (�\CARSPECIAUX 216 \f "Symbol"��A) = 1. Going back to the symbolic context, if �v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��, is the degree of certainty of A, the degree of certainty of �\CARSPECIAUX 216 \f "Symbol"��A noted here vn(�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��), must then verify the relation �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��,vn(�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��)) = vM. The function n must be such that n(�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��)+�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"���\CARSPECIAUX 179 \f "Symbol"��M+1 or n(�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��) �\CARSPECIAUX 179 \f "Symbol"�� M+1-�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��. Giving to n the minimal value, we get the symbolic Negation n, involutive, defined in the set of  Truth degrees �\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��M : �\CARSPECIAUX 116 \f "Symbol"��n(�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��) = �\CARSPECIAUX 116 \f "Symbol"��M+1-�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��.(Cf. [Pacd94(a), p 422]). It allows us to introduce in the set of degrees of symbolic Certainty an operator called n defining the symbolic Complement : n(v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��) = vn(�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��) (Cf. Table 2).  Please note that n is not the unique choice : we must add this property in the axiomatics of the Certainty. We then obtain a symbolic Generalisation of the property [A4] of the classical probabilities. In terms of Certainty, it will give later : Cert(�\CARSPECIAUX 216 \f "Symbol"��A)  = n( Cert(A) ). As an example and still using the same 7-valued scale, we get the complemented values as follows.


Table 2 : Symbolic Complement  n in �\CARSPECIAUX 101 \f "Lucida Bright Math Symbol"��M


v�\CARSPECIAUX 97 \f "Symbol"���
v1�
v2�
v3�
v4�
v5�
v6�
v7�
�
n(v�\CARSPECIAUX 97 \f "Symbol"��)�
v7�
v6�
v5�
v4�
v3�
v2�
v1�
�
2.2 The axiomatics of Certainty


We now define a function of Certainty denoted Cert� that will apply to Boolean statements. So, the statement A is v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� probable is translated into Cert(A) = v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��. This is equivalent to say that A satisfies the concept of certainty at the degree v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��. This predicate of certainty has to satisfy a number of postulates that will use the previous �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"�� and n. First, we impose an adequation of this postulate to the reality. Actually, if the cognitive agent knows that a statement is true (or false), there is no uncertainty, and this predicate must show this evidence. So we shall say that, if a statement is true, the certainty degree associated to it is certain [P2] and, if a statement is false, the certainty degree associated to it is impossible [P3]. More, if the cognitive agent has no direct information on the statement, but only on an equivalent statement, he will use the information at his disposal. So, when two statements are equivalent, their degrees of Certainty are equal [P1]. If a statement has a "coefficient" of uncertainty, its negation will have a "complementary coefficient" ; actually, if a statement is, for instance, very probable, its negation will be very-little_probable [P4]. We have at last to introduce some relations allowing us to evaluate different "operations" on these statements. 


So, we shall say that, if the intersection of two elements is empty, the certainty associated to their union is the symbolic "sum" of their uncertainties [P5] that is an operation giving a value greater than each value. With a "sum" and a "complementary", the other operations on the events follow. One can then sum up the axiomatics governing our concept of Certainty. The Postulates of Cert�  are then :


	[P1] :	If �\CARSPECIAUX 100 \f "Lucida Bright Math Symbol"�� �\CARSPECIAUX 235 \f "Lucida Bright Math Symbol"��M �\CARSPECIAUX 102 \f "Symbol"�� �\CARSPECIAUX 186 \f "Symbol"�� �\CARSPECIAUX 121 \f "Symbol"��, then Cert(�\CARSPECIAUX 102 \f "Symbol"��) = Cert(�\CARSPECIAUX 121 \f "Symbol"��)	[P2] :	If �\CARSPECIAUX 100 \f "Lucida Bright Math Symbol"�� �\CARSPECIAUX 235 \f "Lucida Bright Math Symbol"�� M �\CARSPECIAUX 102 \f "Symbol"��, then Cert(�\CARSPECIAUX 102 \f "Symbol"��) = vM�	[P3] :	If �\CARSPECIAUX 100 \f "Lucida Bright Math Symbol"�� �\CARSPECIAUX 235 \f "Lucida Bright Math Symbol"��1 �\CARSPECIAUX 102 \f "Symbol"��, then Cert(�\CARSPECIAUX 102 \f "Symbol"��) = v1     	[P4] :	Cert(�\CARSPECIAUX 216 \f "Symbol"���\CARSPECIAUX 102 \f "Symbol"��) = n(Cert(�\CARSPECIAUX 102 \f "Symbol"��) )�	[P5] :	If �\CARSPECIAUX 100 \f "Lucida Bright Math Symbol"�� �\CARSPECIAUX 235 \f "Lucida Bright Math Symbol"��1 �\CARSPECIAUX 102 \f "Symbol"���\CARSPECIAUX 199 \f "Symbol"���\CARSPECIAUX 121 \f "Symbol"��, then Cert(�\CARSPECIAUX 102 \f "Symbol"���\CARSPECIAUX 200 \f "Symbol"���\CARSPECIAUX 121 \f "Symbol"��) = S( Cert(�\CARSPECIAUX 102 \f "Symbol"��),Cert(�\CARSPECIAUX 121 \f "Symbol"��) ). 


2.3 Certainty of a logical implication and Generalised Modus Ponens Rule


Let's consider two formulae �\CARSPECIAUX 102 \f "Symbol"�� and �\CARSPECIAUX 121 \f "Symbol"�� verifying the hypotheses Cert(�\CARSPECIAUX 102 \f "Symbol"��) = v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��, Cert(�\CARSPECIAUX 121 \f "Symbol"��) = v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"�� and Cert(�\CARSPECIAUX 102 \f "Symbol"���\CARSPECIAUX 199 \f "Symbol"���\CARSPECIAUX 121 \f "Symbol"��) = v�\CARSPECIAUX 54 \f "Lucida Bright Math Italic"��. Using [P5] it is easy to obtain v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� �\CARSPECIAUX 174 \f "Symbol"�� v�\CARSPECIAUX 108 \f "Symbol"�� = vM if �\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� �\CARSPECIAUX 163 \f "Symbol"�� �\CARSPECIAUX 108 \f "Symbol"�� else vM-�\CARSPECIAUX 97 \f "Symbol"��+�\CARSPECIAUX 108 \f "Symbol"�� which is Lukasiewicz's implication (Cf. [Pacd94(a), p 423]). So this axiomatics leads then to the expected property [P6] : Cert(�\CARSPECIAUX 102 \f "Symbol"���\CARSPECIAUX 201 \f "Symbol"���\CARSPECIAUX 121 \f "Symbol"��) = Cert(�\CARSPECIAUX 102 \f "Symbol"��) �\CARSPECIAUX 174 \f "Symbol"�� Cert(�\CARSPECIAUX 102 \f "Symbol"���\CARSPECIAUX 199 \f "Symbol"���\CARSPECIAUX 121 \f "Symbol"��). This property is the basis of a first inferential process of logical type, that is the Generalised Modus Ponens. Knowing the certainty of A and that of A implies B, we can give bounds for that of B and, in some cases, give its exact value.This result is given by the following proposition� called the Generalised Modus Ponens Rule : If Cert(A)=v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� and Cert(A�\CARSPECIAUX 201 \f "Symbol"��B)=v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��, then Cert(B)=v�\CARSPECIAUX 46 \f "Lucida Bright Math Italic"�� with v�\CARSPECIAUX 46 \f "Lucida Bright Math Italic"���\CARSPECIAUX 206 \f "Symbol"�� [ n( �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(n(v�\CARSPECIAUX 97 \f "Symbol"��),n(v�\CARSPECIAUX 98 \f "Symbol"��)) ),v�\CARSPECIAUX 45 \f "Lucida Bright Math Italic"��]�.


2.4 The notion of Conditional Certainty


Up to this point, we dispose of an uncertainty predicate, but is this one fully manageable ? We may face a problem, that is, all the cognitive agents are evaluating the Uncertainty in the same way. Since the phenomenon of Uncertainty is conditioned by a basis of Knowledge, this predicate finds its real meaning only if it can be itself linked to this basis. Thus, we have not only to define the certainty but also the conditional certainty. The classical definition of conditional probability of B given A is the quotient of the probability of A�\CARSPECIAUX 199 \f "Symbol"��B over that of A (then supposed not null) : pr(B|A) = pr(A�\CARSPECIAUX 199 \f "Symbol"��B) / pr(A) which may be rewrittent as pr(A�\CARSPECIAUX 199 \f "Symbol"��B) = pr(A)*pr(B|A). However, in a symbolic context, we dispose of no division operator, so we have to define a similar operator, noted here C (Conditioning Criterion), or, in an equivalent way, an operator similar to the multiplication, noted here I (Independence Criterion).  It should be obvious that, for such operators, if C is the result of the "division" of A by B, then A has to be equal to the result of the "multiplication" of B and C. These operators are defined algebraically in a Probabilistic Algebra corresponding to the symbolic certainties. We impose to this "product" operator to verify the classical properties of the probabilistic multiplication : commutativity [I1], absorbing element [I2], neutral element [I3], increasing property [I4], associativity [I5]. The existence of an idempotent element [I6] is assumed in order to avoid solutions that do not agree with the human intuition of the Independence Concept. These properties characterise the operator I associated to the taken C by [I7]. The postulates of  I are :


	[I1] : (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 97 \f "Symbol"��) (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 98 \f "Symbol"��) [ I(v�\CARSPECIAUX 97 \f "Symbol"�� ,v�\CARSPECIAUX 98 \f "Symbol"��) = I(v�\CARSPECIAUX 98 \f "Symbol"�� ,v�\CARSPECIAUX 97 \f "Symbol"��) ]	[I2] :	 (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 97 \f "Symbol"��)  [ I(v1 ,v�\CARSPECIAUX 97 \f "Symbol"��) = v1 ] �	[I3] :	 (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 97 \f "Symbol"��)  [ I(v�\CARSPECIAUX 97 \f "Symbol"�� ,vM) = v�\CARSPECIAUX 97 \f "Symbol"�� ]	[I4] :	 (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 97 \f "Symbol"��) (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 98 \f "Symbol"��) (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 103 \f "Symbol"��) [v�\CARSPECIAUX 98 \f "Symbol"�� �\CARSPECIAUX 163 \f "Symbol"��v�\CARSPECIAUX 103 \f "Symbol"�� �\CARSPECIAUX 222 \f "Symbol"��I(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 98 \f "Symbol"��) �\CARSPECIAUX 163 \f "Symbol"�� I(v�\CARSPECIAUX 97 \f "Symbol"�� ,v�\CARSPECIAUX 103 \f "Symbol"��)] �	[I5] :	 (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 97 \f "Symbol"��) (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 98 \f "Symbol"��) (�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 103 \f "Symbol"��) [ I(I(v�\CARSPECIAUX 97 \f "Symbol"�� ,v�\CARSPECIAUX 98 \f "Symbol"��) ,v�\CARSPECIAUX 103 \f "Symbol"��) = I(v�\CARSPECIAUX 97 \f "Symbol"�� , I(v�\CARSPECIAUX 98 \f "Symbol"�� ,v�\CARSPECIAUX 103 \f "Symbol"��))  ] �	[I6] :	 (�\CARSPECIAUX 36 \f "Symbol"��v�\CARSPECIAUX 97 \f "Symbol"���\CARSPECIAUX 206 \f "Symbol"�� [v2 ,va]) [ I(v�\CARSPECIAUX 97 \f "Symbol"�� ,v�\CARSPECIAUX 97 \f "Symbol"��) = v�\CARSPECIAUX 97 \f "Symbol"�� ]�	[I7] :	 C(v�\CARSPECIAUX 97 \f "Symbol"�� ,v�\CARSPECIAUX 108 \f "Symbol"��) = { v�\CARSPECIAUX 98 \f "Symbol"��  |  I(v�\CARSPECIAUX 98 \f "Symbol"�� ,v�\CARSPECIAUX 97 \f "Symbol"��) = v�\CARSPECIAUX 108 \f "Symbol"��} ]


The operator I thus defined by this axiomatics is not unique and many different tables exist. The definition of the operator of "symbolic Division" then follows in a simple way : v�\CARSPECIAUX 108 \f "Symbol"�� = I(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 98 \f "Symbol"��)  �\CARSPECIAUX 219 \f "Symbol" \s 12�� v�\CARSPECIAUX 98 \f "Symbol" \s 10�� �\CARSPECIAUX 206 \f "Symbol"�� C(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 108 \f "Symbol" \s 10��). With this definition, the operator C corresponding to I [I5] is defined in an unique way (Cf. Table 3). Please note that, in a symbolic way, the "division" does not give an element but an interval of Certainty. This is due to the fact that the approximation used for the discretisation does not allow us to give a unique value. In other terms, C(�\CARSPECIAUX 116 \f "Symbol"���\CARSPECIAUX 97 \f "Symbol"��,�\CARSPECIAUX 116 \f "Symbol"���\CARSPECIAUX 98 \f "Symbol"��) is the degree of Certainty of the "division" of Cert(A�\CARSPECIAUX 199 \f "Symbol"��B) by Cert(B). We can then set, in a similar way to the classical Probability, the Conditional Certainty  of B given A : The Conditional Certainty of B given A noted Cert(A|B) is such that Cert(A|B)�\CARSPECIAUX 206 \f "Symbol"��C(Cert(A),Cert(A�\CARSPECIAUX 199 \f "Symbol"��B)). Unlike the definition set in classical Probabilities, we have not defined the conditional Certainty but rather a symbolic interval of conditional Certainty to which belongs the conditional Certainty of B given A. This relative imprecision translates the fact that man apprehends better the "symbolic Multiplication" than the "symbolic Division". In a more formal way, the axiomatics of the "symbolic Division" C is given by (Cf. [Pacd94(a),(b))])�. The Postulates of C are then :


[C1] :	C(v�\CARSPECIAUX 97 \f "Symbol"�� ,v�\CARSPECIAUX 108 \f "Symbol"��) �\CARSPECIAUX 204 \f "Symbol"�� [v�\CARSPECIAUX 108 \f "Symbol"�� , v�\CARSPECIAUX 108 \f "Symbol"���\CARSPECIAUX 174 \f "Symbol"�� v�\CARSPECIAUX 97 \f "Symbol"�� ]		[C2] :	{v�\CARSPECIAUX 97 \f "Symbol"��<v�\CARSPECIAUX 108 \f "Symbol"���\CARSPECIAUX 222 \f "Symbol"��C(v�\CARSPECIAUX 97 \f "Symbol"�� ,v�\CARSPECIAUX 108 \f "Symbol"��)=�\CARSPECIAUX 198 \f "Symbol"��} and {v�\CARSPECIAUX 97 \f "Symbol"���\CARSPECIAUX 179 \f "Symbol"��v�\CARSPECIAUX 108 \f "Symbol"���\CARSPECIAUX 222 \f "Symbol"��C(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 108 \f "Symbol"��)�\CARSPECIAUX 185 \f "Symbol"���\CARSPECIAUX 198 \f "Symbol"��}�[C3] :	�\CARSPECIAUX 200 \f "Symbol"���\CARSPECIAUX 108 \f "Symbol"�� C(v�\CARSPECIAUX 97 \f "Symbol"�� ,v�\CARSPECIAUX 108 \f "Symbol"��) = [ v�\CARSPECIAUX 97 \f "Symbol"��,vM ]}		[C4] :	�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 108 \f "Symbol"���\CARSPECIAUX 163 \f "Symbol"��v�\CARSPECIAUX 97 \f "Symbol"��,�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 109 \f "Symbol"���\CARSPECIAUX 163 \f "Symbol"��v�\CARSPECIAUX 97 \f "Symbol"�� {v�\CARSPECIAUX 108 \f "Symbol"���\CARSPECIAUX 185 \f "Symbol"��v�\CARSPECIAUX 109 \f "Symbol"�� �\CARSPECIAUX 222 \f "Symbol"��C(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 108 \f "Symbol"��)�\CARSPECIAUX 199 \f "Symbol"��C(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 109 \f "Symbol"��)}=�\CARSPECIAUX 198 \f "Symbol"�� �[C5] :	�\CARSPECIAUX 34 \f "Symbol"��v�\CARSPECIAUX 108 \f "Symbol"�� < v�\CARSPECIAUX 109 \f "Symbol"�� �\CARSPECIAUX 163 \f "Symbol"�� v�\CARSPECIAUX 97 \f "Symbol"�� { v�\CARSPECIAUX 120 \f "Symbol"�� �\CARSPECIAUX 206 \f "Symbol"�� C(v�\CARSPECIAUX 97 \f "Symbol"�� , v�\CARSPECIAUX 109 \f "Symbol"��), v�\CARSPECIAUX 122 \f "Symbol"�� �\CARSPECIAUX 206 \f "Symbol"�� C(v�\CARSPECIAUX 97 \f "Symbol"�� , v�\CARSPECIAUX 109 \f "Symbol"��) }�\CARSPECIAUX 222 \f "Symbol"�� v�\CARSPECIAUX 120 \f "Symbol"�� < v�\CARSPECIAUX 122 \f "Symbol"���[C6] :	C(v�\CARSPECIAUX 97 \f "Symbol"�� , v�\CARSPECIAUX 108 \f "Symbol"��) = { v�\CARSPECIAUX 98 \f "Symbol"��|v�\CARSPECIAUX 97 \f "Symbol"���\CARSPECIAUX 206 \f "Symbol"��C(v�\CARSPECIAUX 98 \f "Symbol"�� , v�\CARSPECIAUX 108 \f "Symbol"��) }	[C7] :	�\CARSPECIAUX 36 \f "Symbol"�� v�\CARSPECIAUX 97 \f "Symbol"��, { v1 < v�\CARSPECIAUX 97 \f "Symbol"�� �\CARSPECIAUX 163 \f "Symbol"�� va, v�\CARSPECIAUX 97 \f "Symbol"�� = C(v�\CARSPECIAUX 97 \f "Symbol"�� , v�\CARSPECIAUX 97 \f "Symbol"��) }�[C8] :	C(v�\CARSPECIAUX 97 \f "Symbol"�� , v�\CARSPECIAUX 109 \f "Symbol"��) �\CARSPECIAUX 199 \f "Symbol"�� C(v�\CARSPECIAUX 98 \f "Symbol"�� , v�\CARSPECIAUX 110 \f "Symbol"��) �\CARSPECIAUX 185 \f "Symbol"�� �\CARSPECIAUX 198 \f "Symbol"���\CARSPECIAUX 222 \f "Symbol"�� { �\CARSPECIAUX 36 \f "Symbol"�� v�\CARSPECIAUX 108 \f "Symbol"��, v�\CARSPECIAUX 98 \f "Symbol"���\CARSPECIAUX 206 \f "Symbol"�� C(v�\CARSPECIAUX 109 \f "Symbol"�� , v�\CARSPECIAUX 108 \f "Symbol"��), �\CARSPECIAUX 116 \f "Symbol"���\CARSPECIAUX 97 \f "Symbol"���\CARSPECIAUX 206 \f "Symbol"��C(v�\CARSPECIAUX 110 \f "Symbol"�� , v�\CARSPECIAUX 108 \f "Symbol"��)}�


If I is the operator induced by Lukasiewicz’s implication, an example is the following.


Table  3 : Symbolic Division C in �\CARSPECIAUX 101 \f "Lucida Bright Math Symbol"��7 





�
v1�
v2�
v3�
v4�
v5�
v6�
v7�
�
v1�
[v1,v7]�
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�
v2�
{v1}�
[v2,v7]�
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�
v3�
{v1}�
[v2,v6]�
{v7}�
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�
v4�
{v1}�
[v2,v5]�
{v6}�
{v7}�
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�
v5�
{v1}�
[v2,v4]�
{v5}�
{v6}�
{v7}�
�\CARSPECIAUX 198 \f "Symbol"���
�\CARSPECIAUX 198 \f "Symbol"���
�
v6�
{v1}�
[v2,v3]�
{v4}�
{v5}�
{v6}�
{v7}�
�\CARSPECIAUX 198 \f "Symbol"���
�
v7�
{v1}�
{v2}�
{v3}�
{4}�
{v5}�
{v6}�
{v7}�
�
2.5 The notion of Independence


We can also give to the cognitive agent the notion of Independence of two events. More precisely, it deals with the notion of C-independent events for the evaluation of the Conditional Certainty depends on C.  The chosen definition corresponds to the one of common sense : two events A and B are said to be C-independent if, and only if {Cert(A)=Cert(A|B)} and {Cert(B)=Cert(B|A)}. As in the Classical Probabilistic Approach, the notion of Independence is closely linked to that of intersection : if A and B are C-independent, then Cert(A�\CARSPECIAUX 199 \f "Symbol"��B)=I(Cert(A),Cert(B)). As for the reciprocal, we shall suppose that the "quotient" gives a unique value. So if Cert(A�\CARSPECIAUX 199 \f "Symbol"��B)=I(Cert(A),Cert(B)) and if Card(Cert(A),Cert(A�\CARSPECIAUX 199 \f "Symbol"��B))=1, then the two events A and B are C-independent. Our model differs here from the probabilistic model, not by the chosen definitions but by the characterisation of the properties of Independence. Indeed, a relation on the "symbolic product" is not sufficient to characterise the independence.  This is due to the fact that, using a finite scale of Certainty degrees, the cognitive agent does not handle a strict equality but a neighbourhood relation that reduces the precision of the "calculus". 


2.6 Properties and Combination of Uncertainties


We will now present some results allowing a cognitive agent to handle the uncertainty using our system. More complete results can be found in [Pacd93, 94(a), (b), 95]. Of course, in this paper, the accent is put on the treatment of conditional statements of the language.  The theorems that are introduced here will find an illustration in the last sections. 


�\CARSPECIAUX 183 \f "Symbol" \s 10�� Link between the different operators :


	{ �\CARSPECIAUX 100 \f "Lucida Bright Math Symbol"�� �\CARSPECIAUX 235 \f "Lucida Bright Math Symbol"��M (�\CARSPECIAUX 216 \f "Symbol"��A�\CARSPECIAUX 200 \f "Symbol"��B), Cert(A) = v�\CARSPECIAUX 97 \f "Symbol"��, Cert(B) = v�\CARSPECIAUX 98 \f "Symbol"�� } �\CARSPECIAUX 222 \f "Symbol"�� v�\CARSPECIAUX 97 \f "Symbol"�� �\CARSPECIAUX 163 \f "Symbol"�� v�\CARSPECIAUX 98 \f "Symbol"���.


	{ Cert(A) = v�\CARSPECIAUX 97 \f "Symbol"��, Cert(B) = v�\CARSPECIAUX 98 \f "Symbol"�� } �\CARSPECIAUX 222 \f "Symbol"�� { Cert(A�\CARSPECIAUX 199 \f "Symbol"��B) = v�\CARSPECIAUX 103 \f "Symbol"��, Cert(A�\CARSPECIAUX 200 \f "Symbol"��B) = v�\CARSPECIAUX 100 \f "Symbol"��}


	with v�\CARSPECIAUX 103 \f "Symbol"�� �\CARSPECIAUX 206 \f "Symbol"�� [T(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 98 \f "Symbol"��),v�\CARSPECIAUX 97 \f "Symbol"���\CARSPECIAUX 217 \f "Symbol"��v�\CARSPECIAUX 98 \f "Symbol"��] and v�\CARSPECIAUX 100 \f "Symbol"�� �\CARSPECIAUX 206 \f "Symbol"�� [v�\CARSPECIAUX 97 \f "Symbol"���\CARSPECIAUX 218 \f "Symbol"��v�\CARSPECIAUX 98 \f "Symbol"��,S(v�\CARSPECIAUX 97 \f "Symbol"��, v�\CARSPECIAUX 98 \f "Symbol"��)].


Lukasiewicz's implication also gives �\CARSPECIAUX 100 \f "Symbol"�� = �\CARSPECIAUX 97 \f "Symbol"�� + �\CARSPECIAUX 98 \f "Symbol"�� - �\CARSPECIAUX 103 \f "Symbol"���.


�\CARSPECIAUX 183 \f "Symbol" \s 10�� C-conditional Detachment Rule : 


	Let A and B be two events such that Cert(A) = v�\CARSPECIAUX 97 \f "Symbol"�� and Cert(B|A)=v�\CARSPECIAUX 98 \f "Symbol"��. 


	If v�\CARSPECIAUX 108 \f "Symbol"��=I(Cert(A), Cert(B|A)), then Cert(B) = v�\CARSPECIAUX 98 \f "Symbol"�� with v�\CARSPECIAUX 98 \f "Symbol"���\CARSPECIAUX 206 \f "Symbol"��[ v�\CARSPECIAUX 108 \f "Symbol"��, v�\CARSPECIAUX 97 \f "Symbol"���\CARSPECIAUX 174 \f "Symbol"�� v�\CARSPECIAUX 108 \f "Symbol"��].


�\CARSPECIAUX 183 \f "Symbol" \s 10�� Compound Certainties Formula : 


	If Cert(A) = v�\CARSPECIAUX 97 \f "Symbol"�� and Cert(B|A) = v�\CARSPECIAUX 109 \f "Symbol"��  then Cert(A�\CARSPECIAUX 199 \f "Symbol"��B) = I(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 109 \f "Symbol"��).


�\CARSPECIAUX 183 \f "Symbol" \s 10�� Propagation of the Uncertainty : 


Let A, B, and C events such that Cert(A) = v�\CARSPECIAUX 97 \f "Symbol"��, Cert(B|A) = v�\CARSPECIAUX 109 \f "Symbol"��1. �Then, if Cert(C|B) = v�\CARSPECIAUX 109 \f "Symbol"��2, then Cert(C) = v�\CARSPECIAUX 103 \f "Symbol"��, �with v�\CARSPECIAUX 103 \f "Symbol"���\CARSPECIAUX 206 \f "Symbol"��[ I( I(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 109 \f "Symbol"��1), v�\CARSPECIAUX 109 \f "Symbol"��2),  I(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 109 \f "Symbol"��1)�\CARSPECIAUX 174 \f "Symbol"�� I(v�\CARSPECIAUX 97 \f "Symbol"���\CARSPECIAUX 174 \f "Symbol"��I(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 109 \f "Symbol"��1),v�\CARSPECIAUX 109 \f "Symbol"��2) ].


�\CARSPECIAUX 183 \f "Symbol" \s 10�� Total Certainty Formula : Consider a partition of the universe of discourse, that is, a set of events A1,... An such that their union cover up the universe and such that these events are mutually incompatible.  Consider also an event B ; if we know on the one hand the certainty of each Ai but also for each  Ai the certainty of B given Ai, then, since we work in a partition of the universe, and since we have all the information on B in each part, we can compute the certainty of B : 


Let A1,... An be events such that Cert(A1�\CARSPECIAUX 200 \f "Symbol"��.. An)=vM  and such that for all i and j of {1,...n} with i�\CARSPECIAUX 185 \f "Symbol"��j, Cert(Ai�\CARSPECIAUX 199 \f "Symbol"��Aj) = v1  and such that for every i of {1...n}, Cert(Ai)=v�\CARSPECIAUX 97 \f "Symbol"��i and  Cert(B|Ai)=v�\CARSPECIAUX 109 \f "Symbol"��i. Then, setting v�\CARSPECIAUX 103 \f "Symbol"��1=I(v�\CARSPECIAUX 97 \f "Symbol"��1,v�\CARSPECIAUX 109 \f "Symbol"��1) and for all k=2,...n : v�\CARSPECIAUX 103 \f "Symbol"��k=S(v�\CARSPECIAUX 103 \f "Symbol"��k-1 ,I(v�\CARSPECIAUX 97 \f "Symbol"��k,v�\CARSPECIAUX 109 \f "Symbol"��k)), we get Cert(B) = v�\CARSPECIAUX 98 \f "Symbol"��  with v�\CARSPECIAUX 98 \f "Symbol"��=v�\CARSPECIAUX 103 \f "Symbol"��n.


�\CARSPECIAUX 183 \f "Symbol" \s 10�� Symbolic extension of Bayes' Formula : In the same situation as before (with the partition of Ai), we can evaluate the certainty of all Ai given B knowing the certainty of all the events and also the certainty of B given Ai  ; with the same hypotheses as above, we have, for all i of {1...n} : Cert(Ai|B)= v�\CARSPECIAUX 104 \f "Symbol"��i  with v�\CARSPECIAUX 104 \f "Symbol"��i�\CARSPECIAUX 206 \f "Symbol"��C(v�\CARSPECIAUX 103 \f "Symbol"��n,I(v�\CARSPECIAUX 97 \f "Symbol"��i,v�\CARSPECIAUX 109 \f "Symbol"��i)).


Remark : Up to this point, it is interesting to compare our approach to that of Aleliunas, Darwiche, Darwiche & Ginsberg and of Spohn. 


- 1 - The intuitive properties of our concept of Certainty lead to properties that are similar to those of Coherent State of Belief (axioms A0 - A4) postulated by Darwiche & Ginsberg (Cf. [DaGi2]). More, the T-conorm ( that we introduced by the axiom [P5] stands for the summation operator of their theorem 1. Let's note that their symbolic theory is founded only on a Propositional Logic whereas ours, based upon a M-valued Predicate Logic, owns a greater expressive power. In particular, we can, at the same time, represent and manage the Imprecision and the Uncertainty. Note also that, in their theory, no link is established between their summation operator and the implication, an inferential Process of deductive type is not proposed.


- 2 - A link with the structure of  Aleliunas' Probability Algebra can be made (Cf. [Alel88], [XBPo90]). The operator I (respectively n) taking the place of * (resp. i), the axioms 1-10 proposed in [XBPo90] are verified. Thus, the axiomatics of  I (resp. C) leads to a particular structure of Probability Algebra, finite and totally ordered. Note that our axiomatics is more restrictive. We have added to the theory a notion of Independence closely linked to the Conditional Certainty. A link being made with the implication, we add to the Symbolic extension of Bayes' Theorem the symbolic rule of Generalised Modus Ponens as second means of propagation for the Uncertainty.


- 3 - Our axiomatics of the Concept of Certainty does not give (in the prepositional case) an Aleliunas' Probabilistic Logic (Cf. [Alel90]). Indeed, it is easy to verify that the axioms 7-9 are not satisfied by our concept.


- 4 - Spohn has proposed a new concept of Certainty (degree of strength of the Belief in his theory) in an ordinal way (Cf. [Spoh90]). He introduced  the concept of ordinal degree of conditional Certainty and established a link between his theory and that of Probabilities, and this, via an ordinal, non standard measure of conditional certainty K and an infinitesimal number z : if K(B|A) = n then pr(B|A) has the same order as zn. Substituting successively + * and / of the classical probabilities by his operators min + and -, one then finds again the results of his theory which thus presents as an ordinal, non probabilistic model of inductive reasoning. So, the theory used here presents a similarity with that of Spohn. In both cases, we are looking for a non probabilistic (in the classical sense) model of the concepts of certainty and of conditional certainty, even if the objectives are different. In both cases, one can propose generalisations of classical probabilistic results. But let's point out several important differences. Spohn's approach being ordinal, the operators used are that defined in �\CARSPECIAUX 193 \f "Lucida Bright Math Italic"��, that is min + and -. It is clear that they differ basically from the operators S, I and n that we have built in the scale of certainty. The scale of Graduation in his theory is infinitely denumerable whereas ours, by definition, is finite.


3 The Examples 


The following examples deal with real situations, that is, situations that can be found in the real word. If it impossible to give a numerical probability about the considered events, it is always possible to give a certainty state or a certainty degree to them. Both examples will be treated in �\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��7. Section 4 evaluates the changes when another odd number is taken.


3.1 The magician


Each night, in a cabaret, a magician performs a card trick. He chooses a person in the room and let him draw a card out of a pack of 32. He then forecasts systematically "You drew an ace". Of course, he has some accomplices in the room, who are certain to draw an ace. The trick would be perfect if, every night, anonymous person didn't present as volunteers ; it then becomes little_probable that "the person that draws the card is an accomplice". Knowing that, for a normal person, it is very-little_probable that "the card is an ace", our magician would like to know, before performing his show, what certainty he can expect on the fact that "an ace is drawn". Let A be the event "the person is an accomplice" and B the event "the person draws an ace". The event A constitutes, with its negation, a partition of the universe in two disjunct events (the accomplices and the other persons). We have Cert(A) = v3 and Cert(�\CARSPECIAUX 216 \f "Symbol"��A) = v5. To apply the Formula of the Total Certainty, we must know Cert(B|A) and Cert(B|�\CARSPECIAUX 216 \f "Symbol"��A). By hypothesis, we have Cert(B|A) = v7 and Cert(B|�\CARSPECIAUX 216 \f "Symbol"��A) = v2. So, by the formula, we get Cert(B) = probable, which means that is, it is probable that "the person draws an ace". However, it may be worth to try the trick. We must only be sure that the risks of protest are small. So, we must know what certainty may have a spectator that "the chosen person is an accomplice" when "an ace is drawn", that is, with the same notations as above, Cert(A|B). We then have, using Bayes' Formula :  Cert(A|B) = very_probable. In other terms, it is very_probable that "the person is an accomplice". For a spectator, it is then very_probable that "the person that draws the card is an accomplice" when "an ace is drawn". The risks of contest being too big, our magician abandons his trick.


3.2  Outbreak of fire and prevention


Lets' now illustrate the theory with an example for a DDSIS�. The Director of this Department wants to know the certainty he may have about the risks of a forest fire in his geographic area, depending of course on the category of his area. The categories are built upon the different risks. He considers then the SDACR� classification : each area is classified as "high risks area" (A1), "low and middle risks area" (A2) or "extremely weak risks area" (A3). Considering the different areas, it is then probable that an area is "high risks area", little_probable that it is "low and middle risks area" and very_little_probable that it is "extremely weak risks area". He then esteems that it is very_probable that there will be risks of a forest fire knowing the area is an high risks area (so Cert(B|A1)=v6), that it is rather_probable that there will be risks of forest fire knowing the area is a low and middle risks area (so Cert(B|A2)=v5), and that it is little_probable that there will be risks of forest fire knowing the area is an extremely weak risks area (so Cert(B|A3)=v3). Knowing that, he can then determine the risks of forest fire of any area. After reflection�, our director knows that it is rather_probable that there will be a risk of a forest fire. From Bayes’ Formula, he may also know that it is rather_probable that an area where there are risks of forest fire is an high risks area. 


The DDSIS would then study the need for buying a new HFPT, that is, a heavy FPT�. He thus considers the problem C "a new HFPT is needed". Considering the fleet of heavy and light FPT, he esteems that it is impossible that a HFPT is needed in an extremely weak risks area or in a low and middle risks area, but that it is rather_probable that it is needed in an high risks area, so Cert(C|A1) = v5, Cert(C|A2) = Cert(C|A3) = v1. After reflection�, the DDSIS esteems that it is beforehand very-little_probable that a HFPT is needed. The DDSIS would now refine this result knowing that its area is an high risks area. After reflection, using Bayes’ Formula, its director concludes that it is at least little_probable and at the most rather_probable that a new HFPT is needed. From these considerations, he decides to delay the buying to another date.


The summer comes then and among other tourists, imprudent people also. More, this year, the summer is very dry (event F) ; the problem of the director of the DDSIS is then to know if they have to ask some HFPT in reinforcement from other areas. ��
To him, it is very- probable that another HFPT is needed knowing that there are great forest fires (that is Cert(C|E) = v6). More, he esteems that in his area it is very_probable that there will be great forest fires knowing that the summer is very dry (Cert(E|F) = v6). After a second thought, using the Propagation Rule, the DDSIS esteems that it is between rather and very_probable that a news HFPT is needed. Its director has then only to call out his neighbours in order to avoid some catastrophe and we will leave him to his negotiations.


4 The influence of the size of L 


First, lets' remark that for every odd M, a table for I and C can be constructed. There are of course more than one solution, but one is particularly easy to describe : the one related to Lukasiewics's implication. For I (resp. C), it can be described (or defined) as follows : I(va,vb) is : min(va,vb) for {va,vb } ({ v1, vM }, v2 for a + b �\CARSPECIAUX 163 \f "Symbol" \s 12�� M + 1 and va+b-M otherwise. C(va,vb) is :[ v1,vM ] for va = v1 and vb = v1, { v1 } for va > v1 and vb = v1,�[ v2, va ( vb ] for va > v1 and vb = v2, and { va ( vb } otherwise. It is important to note that there is no objective way to decide which size is the best for a given problem, and which operator I should be taken. It is only a matter of choice. A problem will be representable in the sense of Hofstadter (Cf. [Hofs79]) in a system having M degrees of certainty if for each element A of the problem and for each partition (�\CARSPECIAUX 102 \f "Symbol"��i)i�CARSPECIAUX 206 \f "Symbol"�I of A such that Cert(�\CARSPECIAUX 102 \f "Symbol"��i�CARSPECIAUX 199 \f "Symbol"��\CARSPECIAUX 102 \f "Symbol"��j) is "impossible" ( for all (i,j) of I2 such that i�CARSPECIAUX 185 \f "Symbol"�j), the sum of the certainties of the �\CARSPECIAUX 102 \f "Symbol"��i is equal to the certainty of A and �CARSPECIAUX 200 \f "Symbol"��\CARSPECIAUX 102 \f "Symbol"��i = A, we have : �CARSPECIAUX 83 \f "Symbol"�Cert(�\CARSPECIAUX 102 \f "Symbol"��i)=Cert(A)�.


Let's see how �\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��5,�\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��7,�\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��9,�\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��11� are fit to represent our examples. We may choose any  linguistic qualifiers though the derivation of qualifiers from one M to another may not be explicit. The comparison can be done as follows : for each scale (that is for each choice of M), we compute the certainty of the same event.  The results are then given in the Table 4 :


 Table 4 : Comparison of results for different scales 


Name of the problem�
the magician (I) �
the magician (II)�
the fire outbreaks�
�
    used rule�
Total Certainty�
Bayes' formula�
Propagation�
�
value for M = 5 �
v3�
[v 2, v 4]�
[v 3, v 4]�
�
value for M = 7 �
v 4�
{ v 6}�
[v 4, v 5]�
�
value for M = 9�
v 5�
{ v 8}�
[v 4, v 6]�
�
value for M = 11�
v 6�
{ v 10}�
[v 4, v 7]�
�
One has to be careful : [v3, v4] for M=7 and [v3, v4] for M=9 does not mean the same thing. Also, some choices have been made : v6 for M=7 may be taken as v7 or v8 for M=9. But the reader could check as we did that even with the other possible choices, the results still hold. With all these examples, the results show coherent : the intervals overlap or belong to the others, but we have never disjoint intervals or isolated values. But, it has to be noted that for a same value of M, the results are more or less satisfying for different problems. And also, for a same problem, there seems to be a better value of M, that is a value giving a smaller interval which in turn, gives a stricter approximation. So it is not possible to fix and use a unique value of M for all problems, neither to increase the number to give a more precise value of the intervals for all cases. This is shown by the Table 5 where the rectangles indicate the interval of solution.


Table 5 : Some graduations scales for different values of M.
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5  Conclusion 


In this paper, we have presented a Symbolic Probability Theory that manages the Uncertainty of the statements of the Natural Language evaluated in a Qualitative way. Two different examples have been studied to illustrate the fact that, in situations where the classical Probabilities are ill adapted, our model works simply and gives results that conform to the human intuition. So, clearly, our theory brings new tools to Linguistics for the explicit treatment of uncertain information, in particuliar the Conditionals of the Language. The problem of the choice of the size M of the valuation’s scale has then been discussed, showing that, there is an overlapping of the solutions for any value of M.
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� All the formal definitions as well as the properties expressed formally in the framework of our multivalued logic can be found in [Pacd94(a), (b)].


� Strictly speaking, one should use only logical formulas. In order to give the presentation more clear, we will mix such formulas with the associated natural statements or events within the interpretation (.


� The terms used here are our choice ; of course, everyone can use its own words and have the number of values he wants. We will assimilate the value "on the average probable" to the value "probable" ; this explains by the the fact that the common answer "it's probable" is used by the cognitive agents in this sense. There are other uses of this term, but if we were to take into account every variation in the meaning of this word, we would then not be able to use one.


� Since a unique T-conorm corresponds to an F-implication, (Cf. [Pacd94(a), p 423]), the choice of another implication would have led to associate the T-conorm S (Cf. [Pacd94(a), p 423]). Lukasiewicz's implication has the main advantage to give a Completeness theorem in the used M-valued predicate Logic (Cf. [Pacd94(a), p 471]).


� In order to make it clear, the notation used in the text is different fromt that found in [Pacd94(a),(b)]. In fact, instead of writing �\CARSPECIAUX 100 \f "Lucida Bright Math Symbol"�� �\CARSPECIAUX 235 \f "Lucida Bright Math Symbol"���\CARSPECIAUX 44 \f "Lucida Bright Math Italic"��Prob(�\CARSPECIAUX 64 \f "Lucida Bright Math Italic"��), we will write Cert(�\CARSPECIAUX 64 \f "Lucida Bright Math Italic"��) = v�\CARSPECIAUX 44 \f "Lucida Bright Math Italic"�� ; we will consider of course that there is no ambiguity on the underlying interpretation �\CARSPECIAUX 100 \f "Lucida Bright Math Symbol"��.


� All the postulates are given here informally, the formal definitions being in [Pacd94(a),(b)].


� Having here an interval as result is not part of our theory ; it is a problem intrinsic to the notion of logical consequence, that can, by the way, be found in the majority of inferentials processes.


� Let's note that with the T-conorm T associated with S we have T(v�\CARSPECIAUX 97 \f "Symbol"��,v�\CARSPECIAUX 98 \f "Symbol"��) = n( �\CARSPECIAUX 118 \f "Lucida Bright Math Symbol"��(n(v�\CARSPECIAUX 97 \f "Symbol"��),n(v�\CARSPECIAUX 98 \f "Symbol"��)) ).


� The degree a is such that va = vM+1-a. For M =4, we have va = v4 = probable.


� To make it more readable, we have choosen to present I and to deduce C. In [Pacd94(a),(b)], the operator C is first defined and I is deduced from it in a unique way. The first four axioms of C are important for they limit the choice of partitions of �\CARSPECIAUX 101 \f "Lucida Bright Math Symbol"��M, for each value of v�\CARSPECIAUX 97 \f "Symbol"��, that is non trivial and "increasing" partitions when v�\CARSPECIAUX 108 \f "Symbol"�� �\CARSPECIAUX 163 \f "Symbol"�� v�\CARSPECIAUX 97 \f "Symbol"�� .


� It is a symbolic generalization of the classical result : if A �\CARSPECIAUX 204 \f "Symbol"�� B then pr(A) �\CARSPECIAUX 163 \f "Symbol"�� pr(B)


� Lukasiewicz's implication allows the generalization of the classical negation :  pr(A�\CARSPECIAUX 200 \f "Symbol"��B) = pr(A) + pr(B) - pr(A�\CARSPECIAUX 199 \f "Symbol"��B).


� French acronym for the Direction of a Department of Fire and Help Services.


� French acronym for the Departmental Scheme of Analysis and Coverage of Risks.


� Using the Total Certainty Formula.


� French acronym for  Ton Pump Van that is hardware of big capacities for massive fight againt the fire, includind helicopters, canad-airs...


� Using the Total Certainty Formula.


�  The formula �CARSPECIAUX 83 \f "Symbol"�Cert(�\CARSPECIAUX 102 \f "Symbol"��i) is the sum induced by S ; in the same way as the classical sum  �CARSPECIAUX 83 \f "Symbol"�ui is u1+u2+...+un, our sum is S(S(...S(u1,u2),u3)...un).


� �\CARSPECIAUX 111 \f "Lucida Bright Math Symbol"��3 has not degrees enough to give interesting results, that is, it often gives the total interval�     [impossible, certain].























