
Diversity Control and Multi-Parent

Recombination for Evolutionary Graph Coloring

Algorithms

Daniel Cosmin Porumbel1, Jin-Kao Hao1 and Pascale Kuntz2

1 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers, France
2 LINA, Polytech’Nantes, rue Christian Pauc, 44306 Nantes, France

Abstract. We present a hybrid evolutionary algorithm for the graph
coloring problem (Evocol). Evocol is based on two simple-but-effective
ideas. First, we use an enhanced crossover that collects the best color
classes out of more than two parents; the best color classes are selected
using a ranking based on both class fitness and class size. We also in-
troduce a simple method of using distances to assure the population
diversity: at each operation that inserts an individual into the popula-
tion or that eliminates an individual from the population, Evocol tries
to maintain the distances between the remaining individuals as large as
possible. The results of Evocol match the best-known results from the
literature on almost all difficult DIMACS instances (a new solution is
also reported for a very large graph). Evocol obtains these performances
with a success rate of at least 50%.

1 Introduction

The graph coloring problem is one of the first problems proved to be NP-complete
in the early 70’s. It has a very simple formulation: label the vertices of a graph
with the minimum number of colors such that no adjacent vertices share the same
color. Many other problems and practical applications can be reduced to graph
coloring: scheduling and timetabling problems, frequency assignment in mobile
networks, register allocation in compilers, air traffic management, to name just
a few.

The second DIMACS Implementation Challenge [13] introduced a large set
of graphs for benchmarking coloring algorithms that has been extensively used
since 1996. The most popular coloring algorithms belong to three main solution
approaches: (i) sequential construction (very fast methods but not particularly
efficient), (ii) local search methods (many different techniques [1, 2, 9, 11, 12,
15] can be found in the literature), and (iii) the population-based evolutionary
methods that traditionally dominate the tables with the best results [4, 6–8,14,
15].

We present in this work-in-progress paper a new hybrid evolutionary algo-
rithm (Evocol) that makes contributions in two directions: the recombination
operator (Section 3) and the population diversity control (Section 4). The recom-
bination operator picks up the best color classes out of many (and surely diverse)

parents; the classes are ranked according to their fitness and size. The diversity
control uses a set-theoretic distance measure between colorings to strictly con-
trol which individuals are inserted or deleted from the population. As such, it
keeps the distances between the population individuals as large as possible and it
permanently guarantees global diversity. The resulting algorithm is quite simple
and lightweight, as it incorporates no important additional elements. However,
it obtains very competitive results (Section 5), with plenty of room for further
improvement.

2 Problem Statement and Generic Hybrid Algorithm

Given a graph G(V,E), the graph coloring problem requires finding the mini-
mal number of colors χ (the chromatic number) such that there exists a vertex
coloring (using χ colors) with no adjacent vertices of the same color (with no
conflicts). One could determine the chromatic number by iteratively solving the
following k-coloring problem: given a number of colors k ≥ χ, find a k-coloring
(a coloring using k colors) without conflicts. This method starts with a suffi-
ciently large k (e.g. k = |V | is surely enough) and iteratively decrements k each
time the corresponding k–coloring problem is solved. The k–coloring problem
becomes increasingly difficult until the algorithm can no longer solve it.

A common coloring representation consists in a function I : V → {1, 2, · · · , k},
usually encoded as an array of colors I = [I(1), I(2), . . . , I(|V |)]. While we also
encoded this representation in our programs, it is very useful to interpret a
coloring as a vertex set partition.

Definition 1. (Partition representation) A k-coloring I of V is denoted by a
partition {I1, I2, . . . , Ik} of V —i.e. a set of k disjoint subsets (color classes) of
V covering V such that ∀x ∈ V , x ∈ Ii ⇔ I(x) = i.

We say that I is an individual (a candidate solution for a k-coloring problem); Ii

is the color class i induced by the coloring I, i.e. the set of vertices having color
i in I. This partition based definition is particularly useful to avoid symmetry
issues arising from the color based encoding. As such, it is used for the crossover
operator (see Section 3) and also to define a meaningful distance between color-
ings (see Section 4.1). Moreover, I is a legal or conflict-free coloring (a solution)
if and only no color class of I contains adjacent vertices.

Definition 2. (Conflict number and fitness function) Given an individual I, we
call conflict (or conflicting edge) any edge having both ends in the same class. The
set of conflicts is denoted by C(I) and the number of conflicts (i.e. |C(I)|—also
referred to as the conflict number of I) is the fitness function f(I). A conflicting
vertex is a vertex v ∈ V , for which there exists an edge {v, u} in C(I).

In this paper, we deal with the k-coloring problem as an optimization prob-
lem: given a pair (G, k), our algorithm searches the search space (call it Ω) for a
k-coloring I∗ such that f(I∗) = Minf(I); if f(I∗) = 0, a legal coloring is found.

2

2.1 General design of the evolutionary algorithm

The generic algorithmic template of Evocol shares some basic ideas with other
evolutionary algorithms from the graph coloring literature [2, 4, 6–8,14, 15], but
we enriched the traditional template with new features: (i) the possibility to
combine n ≥ 2 parents to generate an offspring, (ii) the possibility to reject an
offspring if it does not fit some diversity criteria (with respect to the existing
individuals). To be specific, the skeleton of Evocol is presented in Algorithm 1.
The stopping condition is either to find a legal coloring or to reach a predefined
time limit. In our experiments, most of the CPU time is spent by the local search
operator. Depending on the graph, a time limit is equivalent to a limit on the
number of local search iterations—which is a constant multiple of the number
of crossovers (step 2.A.2 and 2.A.3 are always performed together).

Algorithm 1 Evocol: Evolutionary Hybrid Algorithm for Graph Coloring

Input: the search space Ω

Result: the best configuration ever found
1. Initialize (randomly) parent population Pop = (I1, I2, . . . , I|Pop|)
2. While a stopping condition is not met

A. For i = 1 to p (p = number of offspring)
Repeat
1. (I1, I2, . . . , In)=SelectParents(Pop, n) /* n ≥ 2 */
2. Oi =Crossover(I1, I2, . . . In)
3. Oi =LocalSearch(Oi,maxIter)

Until AcceptOffspring(Pop, Oi)
B. Pop=UpdatePopulation(Pop,O1, O2, . . . , Op)

The performance of Evocol closely depends on several independent compo-
nents, most notably: the crossover operator (function Crossover), the popu-
lation management (functions AcceptOffspring and UpdatePopulation),
and the local search algorithm. The SelectParents and LocalSearch pro-
cedures are quite classical and we only briefly describe them.

The parent selection simply consists in choosing n different individuals uni-
formly at random from the population. Such a selection favors diversity of the
chosen parents in comparison with the roulette wheel or tournament selection
that favors the selection of the fittest individuals.

The LocalSearch procedure is an improved version of a classical Tabu
Search algorithm for graph coloring: Tabucol [12]. Basically, this algorithm iter-
atively moves from one coloring to another by modifying the color of a conflicting
vertex until either a legal coloring is found, or a predefined number of iterations
(i.e. maxIter = 100000) is reached. Each performed move (or color assignment)
is marked Tabu for a number of iterations referred to as the Tabu tenure Tℓ;
in this manner, Tabucol cannot re-perform a move that was already performed
during the last Tℓ iterations.

3

Numerous versions of this algorithm can be found in the literature, and one
of the most notable differences between them lies in the way they set the Tabu

tenure. In our case, Tℓ = α ∗ f(C) + random(A) +
⌊

M
Mmax

⌋

, where α, A and

Mmax are predefined parameters, M is number of the last consecutive moves
that kept the fitness function constant, random(A) is a random integer in [1..A].
Concerning the parameters values, we use: α = 0.6, A = 10 (as previously
published in [7]), and Mmax = 1000. The last term is a new reactive component
only introduced to increment Tℓ after each series of Mmax iterations with no
fitness variation. This situation typically appears when the search process is
completely blocked cycling on a plateau; an extended Tabu list can more easily
trigger the search process diversification that is needed in this case.

3 New Multi-Parent Crossover

As already indicated in [4,7], effective graph coloring crossovers can be designed
by considering a coloring as a partition of V (Definition 1). Here, we propose a
Multi-Parent Crossover (MPX) for k-coloring that collects in the offspring the
best color classes from several parents. To formally define the notion of “best
class”, each class in each parent receives a score based on two criteria: (i) the
number of conflicts (generated only by the class vertices) and (ii) the size of the
class. Note that, in comparison with other crossovers in the literature, MPX also
takes into account the class conflict number.

The MPX operator (see Algorithm 2) actually searches (Steps 2.A and 2.B)
for the largest class among those with the minimum class conflict number (i.e.
minimum number of conflicting edges in the class). After assigning the class to
the offspring (Step 2.C), it chooses the next best class and repeats. At each step,
all class scores are calculated only after erasing the vertices that already received
a color in the offspring (Step 2.A.1). It stops when k colors classes are assigned
and a simple greedy procedure then fills any remaining unassigned vertex (Step
3).

The only risk of this crossover is to inherit most classes only from one parent,
especially if there is a (very fit) parent whose classes “eclipse” the others. How-
ever, the similarity between the offspring and the parents is implicitly checked
afterward by the AcceptOffspring procedure (see Section 4.2) that rejects
the offspring if it is too similar to any existing individual.

The complexity of MPX is O(k2 × n × |Ij
i |

2

) where |Ij
i | is the average class

size and n is the number of parents—the term k2 × n is due to the three

For/Foreach loops in step 2 and |Ij
i |

2

is due to step 2.A.2. Since |Ij
i | is

about |V |
k

, this complexity is roughly equivalent to O(|V |2 ×n). In our practical
case n = 3, and thus, the crossover takes much less time than the maxIter =
100000 ≥ |V |2 iterations of the local search procedure (in which, each iteration
takes at least O(|V |)).

Notice that the authors of [5] report multi-parent crossover for the 3-coloring
problem. Contrary to MPX, their crossover operates on an order-based repre-

4

Algorithm 2 The multi-parent crossover MPX

Input: parents I1, I2, . . . , In

Result: offspring O

1. O =empty, i.e. start with no vertex color assigned
2. For currentColor= 1 To k

A. Foreach parent Ii ∈ {I1, I2, . . . , In}
Foreach color class I

j

i in Ii

1. Remove from I
j

i all vertices already assigned in O

2. conflicts = |{(v1, v2) ∈ I
j

i × I
j

i : (v1, v2) ∈ E}|
3. classSize = |Ij

i |
4. score[Ij

i] = conflicts×|V |-classSize

B. Set (i∗, j∗) = argmin(i,j)score[Ij

i]

C. Foreach v ∈ I
j∗

i∗

O[v] =currentColor
3. Foreach unassigned v ∈ O

O[v] =a color that generates the least number of conflicts

sentation of colorings. Experimental results are reported on two small random
graphs of 90 vertices.

4 Population Management

It is well known that the population diversity is a key element of an effective
evolutionary algorithm [7, 16]. In fact, a low diversity constitutes a stopping
condition for numerous practical algorithms—it usually indicates a premature
convergence on poor solutions. By using a distance metric on the search space,
Evocol strictly controls diversity with two mechanisms:

– It rejects a new offspring if it is too close to an existing individual of the
population;

– It introduces a diversity criterion in the selection of the individuals to be
eliminated (diversity-based replacement strategy).

4.1 Search space distance metric

Let us first describe the distance metric on which the diversity control is based.
We define the distance function between individuals IA and IB using the parti-
tion coloring representation (see Definition 1). As such, we view two colorings as
two partitions of V and we apply the following set-theoretic partition distance
(call it d): the minimum number of elements that need to be moved between
classes of the first partition so that it becomes equal to the second partition.
This distance was defined several times since the 60’s and the currently used
computation methodology was first described in the 80’s (see [3], or, more re-
cently [10]); it was also already used for graph coloring [7, 9].

5

The distance d(IA, IB) is determined using the formula d(IA, IB) = |V | −
s(IA, IB), where s denotes the (complementary) similarity function: the maxi-
mum number of elements in IA that do not need change their class in order to
transform IA into IB . This similarity function reflects a structural similarity:
the better the IA classes can be mapped to the IB classes, the higher the value
of s(IA, IB) becomes; in case of equality, this mapping is an isomorphism and
s(IA, IB) is |V |. Both the distance and the similarity take values between 0 and
|V | and this is why we usually report them in terms of percentages of |V |.

To compute these values, we define the k × k matrix S with elements Sij =

|Ii
A ∩ Ij

B|; thus, s can be determined by solving a classical assignment problem:
find a S assignment (i.e. a selection of S cells with no two cells on the same row or
column) so that the sum of all selected cell values is maximized. This assignment
problem is typically solved with the Hungarian algorithm of complexity O(k3)
in the worst case. However, in our practical application, there are very few
situations requiring this worst-case time complexity. We did not observe any
significant slow-down caused by distance computations; the most time consuming
procedure is still the local search.

4.2 Offspring reject mechanism

As we are committed to maintaining population diversity, we insert an offspring
in the population only if its distance to each existing individual is greater than a
predefined threshold; denote it by R. Consequently, if an offspring O is situated
at a distance of less than R from an individual I, the AcceptOffspring pro-
cedure (see Algorithm 1) either (i) rejects O or, (ii) directly replaces I with O if
f(O) ≤ f(I) (i.e. if O is better than I). However, in both cases, a new offspring
is generated by starting with the parent selection—see the Repeat-Until loop
in step 2.A of Algorithm 1.

The only delicate issue in the application of this simple mechanism is to
determine a suitable R value. Let us denote by SR(I) the closed sphere of radius
R centered at I, i.e. the set of individuals I ′ ∈ Ω such that d(I, I ′) ≤ R. If
I is a local minimum, an appropriate value of R should imply that all other
local minima from SR(I) share important color classes with I, i.e. they bring no
new information into the population (or they are structurally related to I). We
have to determine the maximum value of R such that all local minima, that are
structurally unrelated to I, are situated outside SR(I).

Since all individuals in the population are local minima obtained with Tabu
Search, we determine R from an analysis of its exploration path. Consider this
classical scenario: start from an initial local minima I0, and let Tabu Search visit
a sequence of neighboring colorings as usually; we denote by I0, I1 ,I2, . . . IN all
visited individuals satisfying f(Ii) ≤ f(I0) (∀i ∈ [1..N]). After recording all
these individuals up to N = 40000, we computed the distance for each pair (Ii,
Ij) with 1 ≤ i, j ≤ N and we constructed a histogram to show the number of
occurrences of each distance value.

This histogram directly showed that the distribution of the distance value is
bimodal, with numerous occurrences of small values (around 5%|V |) and of some

6

much larger values. This provides evidence that the I ′is are arranged in distant
groups of close points (clusters); the large distances correspond to inter-cluster
distances and the small ones to intra-cluster distances. If we denote a “cluster
diameter” by Cd, we can say that Cd varies from 7%|V | to 10%|V | depending on
the graph, such that: (i) there are numerous pairs (i, j) such that d(Ii, Ij) < Cd,
(ii) there are very few (less than 1%) pairs (i, j) such that Cd < d(Ii, Ij) < 2Cd

and, (iii) there are numerous occurrences of some larger distance values.
To determine a good value of R, it is enough to note that any two local

minima situated at a distance of more than 10%|V | (approximately the highest
possible Cd value) are not in the same cluster—because (ideally) they have
some different essential color classes. We assume that this observation holds on
all sequences of colorings visited by Tabu Search and we set the value of R to
10%|V | for all subsequent runs.

4.3 Diversity-based replacement strategy

The UpdatePopulation procedure determines which existing individual is
eliminated for each offspring that needs to be inserted. While most previous
algorithms take into account only the fitness values of the population (e.g. by
replacing the least fit individual), we also take interest into the population diver-
sity. To control diversity, this procedure encourages the elimination of individuals
that are too close to some other individuals; in this manner, it gets rid of small
distances in the population.

Generally speaking, the procedure (see Algorithm 3 bellow) selects two very
close individuals that candidate for elimination and only the least fit of them is
eliminated. The first candidate C1 is chosen by a random function using some
fitness-based guidelines (via the AcceptCandidate function). The second can-
didate C2 is chosen by introducing the following diversity criterion: C2 is the
closest individual to C1 respecting the same fitness-based guidelines as C1.

The AcceptCandidate function makes a distinction between the first half
of the population (the individuals with a fitness value lower than the median),
the second half of the population and the best individuals. As such, this func-
tion always accepts a candidate Ci for elimination if Ci belongs to the second
half, but it accepts Ci only with 50% probability if Ci belongs to the first half.
Only the best individual is fully protected; it can never become a candidate for
elimination—unless there are too many best individuals (more than half of the
population) in which case any individual can be eliminated. As such, the role
of the first half of the population is to permanently keep a sample of the best
individuals ever discovered. The first half of the population stays quite stable in
comparison with the second half that is changing very rapidly.

5 Experimental Results

The experimental studies are carried out on the most difficult instances from
the well-known DIMACS Benchmark [13]: (i)dsjcA.B—classical random graphs

7

Algorithm 3 The replacement (elimination) function

Input: population Pop = (I1, I2, . . . , I|Pop|)
Result: the individual to be eliminated
1. Repeat

C1 = RandomIndividual(Pop)
Until AcceptCandidate(C1) (fitness-based acceptance)

2. minDist = maximum possible integer
3. Foreach I ∈ Pop − {C1}

If d(I, C1) <minDist
If AcceptCandidate(I)

• minDist = d(I, C1)
• C2 = I

4. If f(C1) < f(C2)
Return C2

Else
Return C1

with unknown chromatic numbers (A denotes |V | and B denotes the density),
(ii)le450.25c and le450.25d—the most difficult ”Leighton graphs” with |V | =
450 and χ = 25 (they have at least one clique of size χ), (iii)flat300.28 and
flat1000.76—the most difficult ”flat” graphs with χ denoted by the last num-
ber (generated by partitioning the vertex set in χ classes, and by distributing
the edges only between vertices of different classes), (iv) r1000.1, r1000.5 and
dsjr500.5—random geometric graphs, generated by picking points (vertices) uni-
formly at random in the square and by adding edges between each two vertices
situated within a certain distance, (v) C2000.5—a very large graph (2.000 ver-
tices and 1.000.000 edges).

We report in Table 1 the general results3 obtained by Evocol with the fol-
lowing settings: |Pop| = 15 (population size), n = 3 (number of parents), p = 3
(number of offspring constructed each generation), maxIter = 100000 (the max-
imum number of iterations of the Tabu Search procedure), R = 10%|V | (the
sphere radius, the minimum imposed distance between two individuals in the
population). For each important value of k, this table reports the success rate
over 10 independent runs (Column 3), the average number of generations re-
quired to solve each problem (Column 4), the average number of crossovers
(Column 5) and the average CPU time in seconds (last column). The reported
times are measured on a 2.8GHz Xeon processor using the C++ programming
language compiled with the −O3 optimization option (gcc version 4.1.2 under
Linux).

The total number of local search iterations is in close relation with the number
of crossovers because the local search procedure (with maxIter = 100000) is
applied once for each crossover. The algorithm performs at least p = 3 crossovers

3 The best colorings reported in this paper are publicly available at: www.info.univ-
angers.fr/pub/porumbel/graphs/evocop/

8

Graph (best known k) k successes/runs generations crossovers time[s]
dsjc250.5 (K∗ = 28) 28 10/10 9 33 20
dsjc500.1 (K∗ = 12) 12 10/10 96 1573 928
dsjc500.5 (K∗ = 48) 48 10/10 258 827 1428
dsjc500.9 (K∗ = 126) 126 10/10 222 985 1804
dsjc1000.1 (K∗ = 20) 20 8/10 301 3350 4688
dsjc1000.5 (K∗ = 83) 84 10/10 274 839 4729

83 6/10 798 2722 13251
dsjc1000.9 (K∗ = 224) 225 10/10 268 857 4328

224 8/10 500 1702 8487
le450.25c (K∗ = 25) 26 10/10 1 3 2

25 7/10 1102 8232 5690
le450.25d (K∗ = 25) 26 10/10 1 3 2

25 5/10 650 4479 3152
flat300.28.0 (K∗ = 28) 31 10/10 16 56 44
flat1000.76.0 (K∗ = 82) 83 10/10 261 802 4539

82 5/10 583 1940 9956
r1000.1c (K∗ = 98) 98 7/10 80 1939 4591
r1000.5 (K∗ = 234) 248 10/10 326 1088 5368

247 8/10 524 1836 8698
246 7/10 448 1417 7497
245 3/10 682 2242 11049

dsjr500.5 (K∗ = 122) 125 10/10 265 1207 1764
124 6/10 612 3113 4508

C2000.5 (K∗ = 153) 152 5/5 380 1163 27262a

151 4/5 433 1368 32520a

Table 1. The results of Evocol with a CPU time limit of 5 hours. The algorithm finds
most of the best known solutions with a success rate of more than 50% (see Column
3)—the minimal value of k for which a solution was ever reported in the literature (i.e.
k∗) is given in the parentheses of Column 1.

a Only for this very large graph, we used an exceptional time limit of 10 hours.

per generation, but it can perform many more (e.g. for the dsjc500.1 instance)
if many offspring are rejected by the AcceptOffspring procedure—see more
discussions in the next section.

6 Discussion

In this section, we investigate the algorithm evolution, placing a special emphasis
on the number of parents (in the recombination) and on the diversity control.
Figure 1 compares the running profile of Evocol (i.e. the graph of the function
t 7→ f∗(t), where t is the time and f∗(t) is the best known fitness value at
time t) for different values of the number of parents n. We first notice that
the two-parent recombination (n = 2) always gives poor results in comparison
with any value n > 2. This confirms that the multi-parent recombination has
more potential; however, it seems more difficult to determine which is the exact
optimum number of parents. We set n = 3 in this paper because this is the most
stable choice: it always produces reasonable results on all graphs—the choice

9

n = 7, even if it seems surprisingly competitive on some random instances, has
great difficulties in solving the Leighton graphs.

0 1000 2000 3000 4000 5000 6000

0
5

1
5

2
5

DSJC1000.5, K=85

Time (seconds)

F
it
n

e
ss

 f

0 1000 2000 3000 4000 5000 6000

0
5

1
0

1
5

DSJC1000.5, K=86

Time (seconds)

F
it
n

e
ss

 f

0 1000 2000 3000 4000 5000 6000

0
1

2
3

4
5

Le450.25, K=25

Time (seconds)

F
it
n

e
ss

 f

Fig. 1. The running profile (i.e. the evolution of the fitness of the best individual in
the population) for several values of the number of parents: 3 parents (red, continuous
line), 5 parents (magenta, with long dashes), 7 parents (blue, with normal dashes), 2
parents (black, with very long dashes).

The population management also plays a very important role in the evolution
of the algorithm. In all situations from Figure 1 where the 7-parent crossover
operator is not effective, we observed that the AcceptOffspring procedure
rejects a very large proportion of the offspring. Table 1 shows important infor-
mation on this issue: if we denote by g the number of generations and by c the
number of crossovers, the number of rejected offspring is c − 3g. As such, the
probability to reject an offspring can vary from 0 (e.g. for G = flat1000.76 and
k = 83, we obtain c−3g

c
= 802−3×261

802
≈ 0.02) to 90% (e.g. for G = r1000.1

10

c−3g
c

= 1939−3×80

1939
≈ 0.88). In the cases where the offspring rejection rate is high,

the population management accounts for the most important performance gain.

7 Conclusions

We described a new hybrid evolutionary algorithm (Evocol) that distinguishes it-
self from other population-based heuristics by introducing a strict population di-
versity control and by employing a multi-parent recombination operator (MPX).
Compared with six state-of-the-art algorithms from the literature (see Table 2),
the results of Evocol are very encouraging. Evocol finds most of the best-known
colorings with at least 50% success rate (see also Table 1, column 3).

Graph χ, k∗ Evocol VSS PCol ACol MOR GH MMT
[11] [1] [8] [15] [7] [14]
2008 2008 2008 1993 1999 2008

dsjc250.5 ?, 28 28 − − 28 28 28 28
dsjc500.1 ?, 12 12 12 12 12 12 − 12
dsjc500.5 ?, 48 48 48 49 48 49 48 48
dsjc500.9 ?, 126 126 127 126 126 126 − 127
dsjc1000.1 ?, 20 20 20 20 20 21 20 20
dsjc1000.5 ?, 83 83 87 88 84 88 83 83
dsjc1000.9 ?, 224 224 224 225 224 226 224 225
le450.25c 25, 25 25 26 25 26 25 26 25
le450.25d 25, 25 25 26 25 26 25 26 25
flat300.28 28, 28 31 28 28 31 31 31 31
flat1000.76 76, 82 82 86 87 84 89 83 82

r1000.1c ?, 98 98 − 98 − 98 − 98
r1000.5 ?, 234 245 − 247 − 241 − 234

dsjr500.5 ?, 122 124 125 125 125 123 − 122
C2000.5 ?, 153a 151 − − − 165 − −

Table 2. Comparison of the best values of k for which a legal coloring is found by
Evocol (Column 3) and by the best algorithms (Columns 4-9). Column 2 reports the
chromatic number (? if unknown) and the best k for which a solution was ever reported.

a This graph was colored with k = 153 [6] by first removing several independent sets.

Indeed, for 11 out of the 15 difficult graphs, Evocol matches the previously
best results: only for 3 DIMACS instances the results of Evocol are worse. For
the largest graph C2000.5, it is remarkable that Evocol manages to find a 151-
coloring (i.e. with 2 colors less than the best coloring known today) with a 4/5
success rate within 10 hours —for such a large instance, other algorithms might
need several days. Note that for most unlisted DIMACS instances, all modern
algorithms report the same k because these instances are not difficult; they can
be easily colored by Evocol using the same number of colors k reported by most
algorithms (like in the case k = 12 for dsjc500.1).

The general principles behind Evocol are quite simple and natural; moreover,
its practical implementation only consists in relatively lightweight programming

11

procedures. Nevertheless, it can quite quickly find the best known k-colorings
and leaves plenty of room for further development.

Acknowledgments: This work is partially supported by the CPER project
”Pôle Informatique Régional” (2000-2006) and the Régional Project MILES
(2007-2009). We thank the referees for their useful suggestions and comments.

References

1. I. Blöchliger and N. Zufferey. A graph coloring heuristic using partial solutions
and a reactive tabu scheme. Computers and Operations Research, 35(3):960–975,
2008.

2. D. Costa, A. Hertz, and C. Dubuis. Embedding a sequential procedure within
an evolutionary algorithm for coloring problems in graphs. Journal of Heuristics,
1(1):105–128, 1995.

3. W.H.E. Day. The complexity of computing metric distances between partitions.
Mathematical Social Sciences, 1:269–287, 1981.

4. R. Dorne and J.K. Hao. A new genetic local search algorithm for graph coloring.
In PPSN 98, volume 1498 of LNCS, pages 745–754. Springer, 1998.

5. A. E. Eiben, P.E. Raué, and Z. Ruttkay. Genetic algorithms with multi-parent
recombination. In PPSN 94, volume 866 of LNCS, pages 78–87. Springer, 1994.

6. C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research, 63(3):437–461, 1996.

7. P. Galinier and J.K. Hao. Hybrid Evolutionary Algorithms for Graph Coloring.
Journal of Combinatorial Optimization, 3(4):379–397, 1999.

8. P. Galinier, A. Hertz, and N. Zufferey. An adaptive memory algorithm for the
k-coloring problem. Discrete Applied Mathematics, 156(2):267–279, 2008.

9. C.A. Glass and A. Pruegel-Bennett. A polynomially searchable exponential neigh-
bourhood for graph colouring. Journal of the Operational Research Society,
56(3):324–330, 2005.

10. D. Gusfield. Partition-distance: A problem and class of perfect graphs arising in
clustering. Information Processing Letters, 82(3):159–164, 2002.

11. A. Hertz, A. Plumettaz, and N. Zufferey. Variable space search for graph coloring.
Discrete Applied Mathematics, 156(13):2551–2560, 2008.

12. A. Hertz and D. Werra. Using tabu search techniques for graph coloring. Com-

puting, 39(4):345–351, 1987.
13. D.S. Johnson and M. Trick. Cliques, Coloring, and Satisfiability: Second DIMACS

Implementation Challenge, volume 26 of DIMACS series in Discrete Mathematics

and Theoretical Computer Science. American Mathematical Society, 1996.
14. E. Malaguti, M. Monaci, and P. Toth. A Metaheuristic Approach for the Vertex

Coloring Problem. INFORMS Journal on Computing, 20(2):302, 2008.
15. C. Morgenstern. Distributed coloration neighborhood search. [13], pages 335–358.
16. K. Sörensen and M. Sevaux. MA—PM: Memetic algorithms with population man-

agement. Computers and Operations Research, 33(5):1214–1225, 2006.

12

