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Abstract We present an experimental investigation of tabu search (TS) to solve the
3-coloring problem (3-COL). Computational results reveal that a basic TS algorithm
is able to find proper 3-colorings for random 3-colorable graphs with up to 11000
vertices and beyond when instances follow the uniform or equipartite well-known
models, and up to 1500 vertices for the hardest class of flat graphs. This study also
validates and reinforces some existing phase transition thresholds for 3-COL.

Keywords 3-coloring - Random graphs - Phase transitions - Tabu search

PACS 64.60.-i - 02.10.0x - 75.10.Nr - 89.20.Ff

1 Introduction

Given a simple undirected graph G = (V(G),E(G)), where V(G) = {vi,v2,...,vn} is
a set of n vertices (n is usually called the “order” of G) and E(G) C V(G) X V(G) a set
of m edges, and a set C = {cy,c3,...,cx } of k colors, a k-coloring of G is any assign-
ment of one of the k available colors from C to every vertex in V(G). More formally,
a k-coloring of G is a mapping ¢ : V(G) — C. The k-coloring problem (k-COL) is
to find such a mapping (or prove that none exists) such that adjacent vertices receive
different colors (called “proper” k-coloring). More formally, a proper k-coloring of
G verifies {v;,v;} € E(G) — c(v;) # c(v;). The tightly related optimization version
of k-COL is the graph coloring problem (COL): Determine a proper k-coloring of G
with k minimum, i.e. the chromatic number x(G).
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k-COL is known to be NP-complete when k > 3 for general graphs (Garey and
Johnson 1979; Karp 1972). It remains NP-complete even for particular classes of
graphs, including, for instance, triangle-free graphs with maximum degree 4 (Maf-
fray and Preissmann 1996). Classes of graphs for which 3-COL can be decided in
polynomial time are discussed, for instance, in (Alekseev et al 2007; Kochol et al
2003).

Another way to express the difficulty of a combinatorial search problem is to
consider the phase transition phenomenon which refers to the “easy-hard-easy” tran-
sition regions where a problem goes from easy to hard, and conversely (Hartmann
and Weigt 2005; Dubois et al 2001; Monasson et al 1999; Gent et al 1996; Hogg
et al 1996; Cheeseman et al 1991), see also (Zdeborova and Krzakata 2007; Barbosa
and Ferreira 2004; Krzakata et al 2004) for k-COL. Various phase transition thresh-
olds (noted 7 hereafter) have been identified for some classes of random graphs. For
3-COL, 7 seems to occur when the edge probability p is such that 2pn/3 ~ 16/3 ac-
cording to Petford and Welsh (1989) (referred as 7,, in the rest of the paper), when the
mean connection degree 2m/n /2 5.4 (7, from Cheeseman et al (1991)), when 7/n <
p < 8/n (1, from Eiben, van der Hauw, and van Hemert (1998)), when 2m/n = 4.6
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(7, from Culberson and Gent (2001)), or when p ~ 2 + 323 <1 —(3) > (t, from

Erben (2001)). Note that 7, and 7, are similar to the upper bound of 7, (8/n). 7.
and 7, are also similar but 7. holds only for graphs that are first transformed (before
solving) using three “particular reduction operators” (Cheeseman et al 1991). Addi-
tionally, 7, was characterized just for equipartite graphs and 7,, only for equipartite
and uniform graphs (the construction of such graphs is described in Sect. 2). Hence-
forth, we use the terminology outside of 15, (or 7. or T,, etc.) to indicate parameter
values outside of the indicated 7 setting.

This paper focuses on an experimental study of finding solution for 3-colorable
random graphs around and outside of phase transitions. We are particularly interested
in two questions. First, are graphs around phase transitions really difficult to color
from a practical solution point of view? Effectively, the different thresholds for phase
transition have been established either theoretically or empirically. In both cases, it
would be interesting to verify these thresholds by large scale computational experi-
mentation. Notice that, except (Eiben et al 1998), most experimental studies (see e.g.
(Cheeseman et al 1991; Hogg et al 1996)) are based only on systematic backtracking
search algorithms and small graphs (with no more than 200 vertices). Little is known
about the behavior of a (metaheuristic-based) search algorithm on solving large and
very large 3-colorable graphs.

Closely related to this first question is another interesting point: Given the phase
transition phenomenon, what are the largest sizes of the graphs that can be colored in
practice? Actually, the phase transition thresholds distinguish the relative hardness of
instances around and outside of the thresholds. They don’t tell much about whether
such instances can be solved easily with a practical solution algorithm (such as tabu
search) and for which problem sizes a solution is possible.

In this study, we aim to investigate these issues by studying a large range of ran-
dom graphs generated according to three well-known distributions: uniform, equipar-
tite, and flat (see next section for more details). For the solution algorithm, we employ



a simple tabu search (TS) algorithm (Glover and Laguna 1997) which can be consid-
ered as a baseline reference for the class of metaheuristic (k-)coloring algorithms.

We report computational results on graphs with up to 11000 vertices, leading to
two main findings. First, the variation of solution difficulty of random graphs around
and outside of phase transition thresholds are clearly confirmed throughout the ex-
periments: Graphs around the phase transition thresholds are actually more difficult
to color than those outside of the thresholds. Second, for the three classes of graphs
(uniform, equipartie and flat), the TS algorithm is able to find solutions for graphs
with up to at least 11 000 vertices if the graphs are outside of the phase transitions.
For graphs around the phase transitions, the TS algorithm always manages to find
solutions for uniform and equipartie graphs with up to at least 11 000 vertices, but for
flat graphs, the performance seems limited to graphs of 1500 vertices.

The next section presents the three classes of 3-colorable random graphs studied
in this paper. The TS 3-coloring algorithm is described in Sect. 3. Computational
results are given in Sect. 4 before concluding.

2 Random graphs

While many classes of random graphs exist (Krivelevich and Sudakov 2006; Bol-
lobas 2001), we focus our study on three well-known classes of 3-colorable graphs:
uniform, equipartite, and flat.

There are several reasons for this choice. These random graphs have been ob-
ject of a number of theoretical (and sometimes practical) studies and analyses, see
e.g. (Zdeborova and Krzgkata 2007; Krzakata et al 2004; Braunstein et al 2003; Cul-
berson and Gent 2001; Bollobas 2001; Erben 2001; Fleurent and Ferland 1996a).
There is a publicly available generator from http://web.cs.ualberta.ca/~joe/
Coloring/Generators/generate.html (newer version). The work reported in
(Eiben et al 1998), the only paper that we are aware of on practical solution of the
3-coloring problem, is based on random graphs generated by the same generator,
making it possible to use the results of Eiben et al (1998) as a reference for reporting
the 3-coloring results of our TS algorithm.

Y niform. Vertices are first randomly assigned to one of the 3 colors uniformly and
independently. Then, each edge {v;,v;} verifying c(v;) # c(v;) appears with prob-
ability p. We will refer to these graphs with the %, ;, notation (or %, for short).
Specify 3 at “K-coloring schemes”, 3 at “partition number”, 0 at “variability”,
and 1 at “graph type” prompts when running the generator.

&quipartite. In &, , graphs, V(G) is first split into 3 subsets V,,cc (C = {c1,¢2,¢3}
since k = 3) such that |V,,| = |n/3] or |V,| = [n/3] Vc; € C (i.e. all V, are nearly
equal in size, the smallest subset having one less member than the largest), v; €V,
meaning c(v;) = ¢;. Then, edges appear as in % graphs. Specify 2 at “K-coloring
schemes”, 3 at “partition number”, and 1 at “graph type” prompts.

Flat. Based on & graphs, the .%, , graphs have an additional property related to
the variation of the expected degree of the vertices. Specify 6 at “K-coloring
schemes”, 3 at “partition number”, and 0 at “flatness” prompts.



3 TC: A tabu search algorithm for 3-COL

In this section, we describe the components and overall scheme of our tabu search 3-
coloring algorithm (called TC) used for our 3-COL experiments. TC is an application
to 3-COL of the TS metaheuristic (Glover and Laguna 1997). Its implementation is
based on the TS (k-)coloring algorithms given in (Fleurent and Ferland 1996a; Dorne
and Hao 1998), which themselves are improved variants of TABUCOL, the first TS
algorithm for general (k-)COL introduced in (Hertz and de Werra 1987)!.

Starting state. The well known greedy DSATUR algorithm (Brélaz 1979) is used to
build a starting 3-coloring (proper or not) while restricting the number of avail-
able colors to 3. Vertices that cannot be assigned any of the 3 colors without
generating conflicts are (temporarily) removed from the graph with their incident
edges. After running DSATUR, these free vertices are finally randomly assigned
one of the 3 authorized colors.

Fitness function. Let € be the set of all 3-colorings (proper or not) of G and E (c) be
the set of conflicting edges (i.e. with endpoints colored the same) of ¢ € €: E(c) =
{{vi,vj} € E(G) : ¢(vi) = ¢(vj)}. Any 3-coloring c is evaluated according to the
following fitness function to be minimized: f(c) = |E(c)| (f : € — {0,1,...,m}).
Note that ¢ is a proper 3-coloring if f(c) = 0.

Move operator. A move m maps a 3-coloring ¢ to another 3-coloring ¢’ (i.e. m :
% — %) by changing the color of exactly one vertex v; to ¢’(v;) # ¢(v;), noted
¢ =me(vj,c'(vj)). Let M(c) be the set of all potential moves available from c:
M(c) = {(v;,c'(v)) : €' (v}) # c(v)) -

Neighborhood. The set of 3-colorings ¢’ reachable from ¢ by applying all potential
moves defines the neighborhood N(c) of . More formally, N(c) = {¢’ = mc(v;,
dv): (v, d(v) e M(c)}.

Tabu list. When a move m is performed from a 3-coloring c to ¢’ € N(c), the reverse
move mc_,1 (vj, ¢(vj)) = c (i.e. assigning to v; its previous color) is “tabu” (forbid-
den) for the next TT = min{(k—1)f(c), o[V (c)| + rand(g)} iterations?, where o
is a TC parameter, rand(g) is a random integer from {1,2,..., g} (the role of g is
just to introduce a few stochastic noise), and V(c) C V(G) is the set of conflicting
vertices of ¢ (V(c) = {v; : {vi,v;} € E(G) — c(vi) = c(vj)}).

Stopping criterion. TC halts whenever f(c¢) = 0 (a proper 3-coloring ¢ has been
found) or after a maximum allowed number of moves.

Given the previous components of TC, the core procedure (see Algorithm 1)
searches for a 3-coloring ¢* € € (proper or not) with a minimum number of con-
flicting edges (with f(c*) = 0 ideally, meaning that TC halts since it has found a
proper 3-coloring ¢*). To do so, TC iteratively moves from a 3-coloring ¢ € % to a
¢’ € N(c). Let M,(c) C M(c) be the set of best moves (according to f) available from
¢ and involving a conflicting vertex such that, Vm € M, (c), m is not tabu or m leads

I A C++ source code implementing TABUCOL is available e.g. from www . imada.sdu.dk/~marco/
gcp-study.

2 TT is called the “tabu tenure”. We used the same dynamic 7T formula than that in (Dorne and Hao
1998) since this approach achieved effective results.



to a neighbor better than the best 3-coloring ¢* found so far (aspiration criterion). If
M, (c) # 0, m is chosen at random from M. (c) according to some probability 7. Oth-
erwise, i.e. with probability 1 — w or when M, (c) = 0, m is chosen at random from
M(c). Note that ¢* is updated each time f(¢) < f(c*).

Algorithm 1 The core of TC.

Require: A 3-colorable graph G = (V(G),E(G)) and a set C = {c;,c2,c3} of three colors
Require: A starting 3-coloring ¢ € € of G // Proper or not

1: ¢* < ¢ // Best 3-coloring found so far
2: TL(j,i) < 0V(vj,c;) € V(G) x C // Make the tabu list TL empty
3: u < 0// Current number of moves
4: while stopping criterion not met do
S: we—p+1
6:  LetM(c)={(vj,d(vj)): ¢ €N(c)}
7 LetMy(c) ={(vj,c'(vj)) eM(c):
8 vy eV(c)and V(v () € M(c), £(¢') < £(c") and (TL(j,/(v,)) < p oF £(c') < f(c*))}
9:  Let r be arandom real number in [0, 1]
10:  if M.(c) =0 or r> 7 then
11: Randomly select a move (v;,c’(v;)) from M(c)
12:  else
13: Randomly select a move (v;,c’(v;)) from M, (c)
14:  TL(j,c(v;)) < u+TT // Forbid the reverse move m~! at least up to iterations y + T'T
15: ¢(vj) < ¢/(vj) // Do the selected move
16:  if f(c) < f(c*) then
17: ¢t —c

18: return c*

Note that selecting (lines 11 and 13 in Algorithm 1) or doing (line 15) a move in
TC can be achieved efficiently, i.e. within small time complexity, using a particular
data structure inspired by a technique from Fleurent and Ferland (1996b) and usually
called “6 table” in the wide tabu search literature. Basically, 0 is a n x k matrix
where 6,(j,c’(v;)) stores the fitness variation (between ¢ € ¢ and ¢’ € N(c)) when
the color assigned to v; € V changes from c(v;) to ¢(v;): 8:(j,c'(v})) = f(c") — f(c).
0 is initialized once at the beginning of the search (before line 4, in time O(nk)) and
updated each time a move is performed (after line 15, in time O(nk) in the worst case
but, in practice, only a subset of 6 is updated). While selecting a move from the M(c)
set (line 11) takes O(1) time, the evaluation of all “best” moves from the M, (c) set
(line 13) is almost incremental: It can be achieved in O(|V (c)|k) time in the worst
case thanks to 8. Thus, each iteration takes O(2nk) time at most since |V (c)| < n for
any 3-coloring c.

4 Computational results

The computational experiments reported in Secs. 4.1-4.5 are based on the following
general protocol.

Benchmark set. A collection consisting of 263 different instances is built according
to Sect. 2. Recall that all these graphs are 3-colorable by construction. Their order



ranges from 200 to 11 000. Note that the generator requires an integer seed for
randomization initialization: We always use 5 as in (Eiben et al 1998) to deal
exactly with the same instances. Additionally, Eiben et al (1998) noted that this
parameter seems to have no great influence on results.

Reference algorithm. For reporting computational results of TC, we use the SAW
evolutionary algorithm (Eiben et al 1998) as a reference. Indeed, according to
Eiben et al (1998), SAW is effective in 3-coloring random 3-colorable graphs
of large order (up to 1500 vertices). Moreover, the authors clearly describe the
graph generator employed and the seed for randomization initializations, making
it possible to make direct comparisons. In all our tables shown later in the paper,
“-” signals unavailable or inapplicable entries and results reported for SAW are
approximated from figures in (Eiben et al 1998). No information is given for SAW
in some of our tables since it cannot be retrieved from (Eiben et al 1998).

Performance criteria. The solution performance is assessed according to the well-
known “Success Rate” measure (SR): It is the percentage of successful runs,
i.e. in which a proper 3-coloring is found, over a given number of runs. To
give an idea of the TC computational effort, we also report the mean number
of moves required by TC to find a proper 3-coloring (AMS, for “Average num-
ber of Moves to Solution”) and its standard deviation (Gas). Eiben et al (1998)
used a slightly different measure, namely the mean number of fitness evaluations
(AES, for “Average number of Evaluations to Solution”). Note that AMS and AES
are implementation and hardware independent measures. The mean computation
time 7T and its standard deviation o7 (in seconds) are also reported for successful
runs of TC.

Phase transition. In some tables, the cases the closest to 7., T, Ts, T, and T, are
identified with the appropriate “c”, “e”, “g”, “h”, and “w” letters in the T columns.
The bold entries in Tables 1-9 (Sect. 4.1) and Tables 10-18 (Sect. 4.2) indicates
which 7 is the closest to the hardest cases (minimum SR, or maximum AMS or
AES), i.e. it suggests which 7 seems to be best suited to locate the phase transition.

Implementation. Our TC algorithm is coded in the C programming language (“‘gcc”

compiler). All TC computational results were obtained on a Sun Fire V880 server
with 8 Gb RAM (UltraSPARC III CPU 750 MHz).
The values of the main TC parameters were empirically determined during a few
preliminary computational experiments (not shown here): o = 0.5,g = 2, and
k = 3 (to compute the tabu tenure 77), and © = 0.85 (probability to select a
move in M,,).

4.1 Influence of the edge probability p on the problem difficulty

Almost similarly to Eiben et al (1998), we first limit the maximum allowed number
of moves of the TC algorithm to 300 000 and vary p from 0.015 to 0.075 for n = 200
(step 0.005, 100 runs per p value and per graph, a total of 39 graphs), 0.006 to 0.05
for n =500 (step 0.004, 50 runs, 36 instances), and 0.002 to 0.026 for n = 1000 (step
0.002, 25 runs, 45 graphs). Note that three instances were generated per p value since
we consider three types of graphs (%, &, and .%). Results are reported in Tables 1-9



Table 1 Small-order % graphs (n = 200): Influence of the edge probability p (100 runs).

» . TC (300 000 moves) SAW

SR AMS oans T () or(s) SR AES
0.015 1 0.0 00 <1 <1 1 0
0.02 1 0.6 26 <1 <1 1 0
0.025 1 124.2 2646 <1 <1 1 0
0.03 1 33765 29820 < <1 1 10000
0.035 g,h 1 144236 133718 <1 <1 0.90 75000
004  cehw 1 2851.6 21405 <1 <1 1 10000
0.045 1 840.9 618.1 <1 <1 1 4000
0.05 1 1150.6 6613 <1 <1 1 4000
0.055 1 869.2 5202 <1 <1 1 2000
0.06 1 1242.1 13907 <1 <1 1 2000
0.065 1 7315 6113 <1 <1 1 1000
0.07 1 720.6 4052 <1 <1 1 1000
0.075 1 519.3 309.8 <1 <1 1 500

Table 2 Small-order & graphs (n = 200): Influence of the edge probability p (100 runs).

» c TC (300 000 moves) SAW

SR AMS Cams T(s) or(s) SR AES
0.015 1 0.0 0.0 <1 <1 1 0
0.02 1 0.5 2.8 <1 <1 1 0
0.025 1 65.3 103.9 <1 <1 1 0
0.03 1 4540.7  3984.8 <1 <1 1 13000
0.035 g,h 1 11865.1  9946.7 <1 <1 085 68000
0.04 c,e.h,w 1 3699.8 29933 <1 <1 1 68 000
0.045 1 998.3 709.6 <1 <1 1 9000
0.05 1 766.3 398.3 <1 <1 1 9000
0.055 1 10194 858.6 <1 <1 1 4500
0.06 1 1786.9 1418.6 <1 <1 1 4500
0.065 1 971.5 1440.8 <1 <1 1 2000
0.07 1 510.4 291.5 <1 <1 1 2000
0.075 1 248.9 221.0 <1 <1 1 1000

Table 3 Small-order .% graphs (n = 200): Influence of the edge probability p (100 runs).

» . TC (300 000 moves) SAW

SR AMS oas T(G)  or(s) SR AES
0.015 1 0.0 00 <1 <1 1 0
0.02 1 0.0 00 <1 <1 1 0
0.025 1 6.7 250 <1 <1 1 0
0.03 1 720.5 7182 <1 <1 1 8000
0.035 g,h 1 586364 474280 <1 <1 0.37 110000
004  cehow 1 142264 136752 <1 <1 0.65 75000
0.045 1 27493 17790 <1 <1 1 13500
0.05 1 1053.1 2602 <1 <1 1 12500
0.055 1 1146.8 6526 <1 <1 1 6000
0.06 1 27851 29298 <1 <1 1 6000
0.065 1 941.1 7487 <1 <1 1 3000
0.07 1 931.8 7742 <1 <1 1 3000
0.075 1 398.2 2802 <1 <1 1 3000




Table 4 Medium-order % graphs (n = 500): Influence of the edge probability p (50 runs).

» . TC (300 000 moves) SAW

SR AMS oas T () or(s) SR AES
0.006 1 0.0 00 <1 <1 1 0
0.01 1 286.9 3819 <1 <1 1 8000
0014 c,g,h,w 09 980804 74802.3 1.6 1.1 0.1 90000
0.018 ew 1 47541 24059 <1 <1 1 25000
0.022 1 5113.1 28524 <1 <1 1 8000
0.026 1 52358 33786 <1 <1 1 8000
0.03 1 1769.5 744.1 <1 <1 1 8000
0.034 1 2504.7 19374 <1 <1 1 8000
0.038 1 956.8 7962 <1 <1 1 8000
0.042 1 935.4 4805 <1 <1 1 8000
0.046 1 1380.1 47394 <1 <1 1 8000
0.05 1 874.7 5560 <1 <1 1 8000

Table 5 Medium-order & graphs (n = 500): Influence of the edge probability p (50 runs).

» 1_ TC (300 000 moves) SAW

SR AMS Cams T(s) or(s) SR AES
0.006 1 0.0 0.0 <1 <1 1 0
0.01 1 263.7 2522 <1 <1 1 8000
0014 c,g,h,w 056 1809509 63173.1 2.8 <1 0 -
0.018 e,w 1 6913.4 7106.6 <1 <1 1 30000
0.022 1 4678.5 2060.6 <1 <1 1 20000
0.026 1 9008.2 192184 <1 <1 1 12500
0.03 1 1855.7 1363.8 <1 <1 1 12500
0.034 1 1205.9 1628.4 <1 <1 1 12500
0.038 1 2021.1 11499 <1 <1 1 8000
0.042 1 1415.1 4915.3 <1 <1 1 8000
0.046 1 57564  27617.0 <1 <1 1 8000
0.05 1 469.4 609.2 <1 <1 1 8000

Table 6 Medium-order .% graphs (n = 500): Influence of the edge probability p (50 runs).

» . TC (300 000 moves) SAW

SR AMS oams T (s) or(s) SR AES
0.006 1 0.0 0.0 <1 <1 1 0
0.01 1 26.7 60.2 <1 <1 1 500
0014 g,h,w 072 1333913 69861.7 2.1 11 0.08 115000
0.018 c,e,w 1 26981.2  28508.1 <1 <1 0.54 85000
0.022 1 7931.2 4684.5 <1 <1 0.94 55000
0.026 1 17668.1 309154 <1 <1 1 16500
0.03 1 1732.8 962.6 <1 <1 1 12500
0.034 1 3757.1 1727.3 <1 <1 1 4000
0.038 1 22479 19759 <1 <1 1 4000
0.042 1 288.5 250.8 <1 <1 1 4000
0.046 1 1289.3 1001.6 <1 <1 1 4000
0.05 1 1019.7 856.1 <1 <1 1 4000




Table 7 Large-order % graphs (n = 1000): Influence of the edge probability p (25 runs).

» . TC (300 000 moves) SAW

SR AMS owms T(s) or(s) SR AES
0.002 1 0.0 00 <1 <1 1 0
0.004 1 82.9 2037 <1 <1 1 4000
0.006 g 1 1139858  78314.6 3.6 24 1 95000
0.008 c,e,h,w 1 1171908 73166.9 57 3.6 0.04 135000
0.01 1 139286 57706 <1 <1 1 60000
0.012 1 35546.6  32219.9 14 1.1 1 35000
0.014 1 49721 20145 <1 <1 1 20000
0.016 1 110204 68744 <1 <1 1 20000
0.018 1 8920.1 41359 <1 <1 1 20000
0.02 1 3220.8 11309 <1 <1 1 10000
0.022 1 48742 30290 <1 <1 1 10000
0.024 1 4685.3 18959 <1 <1 1 10000
0.026 1 16523 7114 <1 <1 1 10000

Table 8 Large-order & graphs (n = 1000): Influence of the edge probability p (25 runs).

» c TC (300 000 moves) SAW

SR AMS Oams T(s) or(s) SR AES
0.002 1 0.0 0.0 <1 <1 1 0
0.004 1 0.0 0.0 <1 <1 1 8000
0.006 g 1 132932.7  74624.1 4.2 2.3 0.96 120000
0008 c,e,h,w 1 102510.6  73566.2 5.1 3.8 0 -
0.01 1 12648.1 6684.0 <1 <1 0.96 85000
0.012 1 817194 432274 29 1.5 1 40000
0.014 1 9683.8 4300.5 <1 <1 1 30000
0.016 1 12685.9 6086.4 <1 <1 1 20000
0.018 1 14078.4 92423 <1 <1 1 16500
0.02 1 4762.6 1995.0 <1 <1 1 16500
0.022 1 7353.6 3467.2 <1 <1 1 16500
0.024 1 6206.8 3096.5 <1 <1 1 16 500
0.026 1 3523.1 1168.8 <1 <1 1 16500

Table 9 Large-order .% graphs (n = 1000): Influence of the edge probability p (25 runs).

» . TC (300 000 moves) SAW

SR AMS oas T(G)  or(s) SR AES
0.002 1 0.0 00 <1 <1 1 0
0.004 1 0.0 00 <1 <1 1 0
0.006 g 1 229524 144090 <1 <1 1 50000
0.008 c,e,h,w 0.04 102504.0 0.0 57 0.0 0 -
0.01 1 383493  30597.6 3.1 25 048 132500
0.012 1 83314.1  55334.2 3.0 1.9 0.88 100000
0.014 1 192892 128356 12 <1 1 50000
0.016 1 10703.1 32513 <1 <1 1 22500
0.018 1 96338 44906 < <1 1 22500
0.02 1 59373 25405 <1 <1 1 10000
0.022 1 63278 26857 <1 <1 1 10000
0.024 1 41078 23854 <1 <1 1 10000
0.026 1 35238 15688 <1 <1 1 10000
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where the two lines associated with 7 (between the two dashed lines) correspond to
graphs around (i.e. the closest to) the indicated phase transition thresholds while the
other lines concern graphs outside of (i.e. more distant from) these thresholds.

On the set of small-order instances (n = 200, see Tables 1-3), TC always succeeds
in all runs (SR is always 1) for all the graphs within the time limit of 300 000 moves,
but needs more moves to find a solution for a graph at the phase transitions (when p =
0.035) than outside of the thresholds. Note that the initialization procedure DSATUR
alone always finds a proper 3-coloring whenever p = 0.015 and for the F5000.02
graph (AMS = 0.0 means that TC performs no move at all). DSATUR also obtains
proper 3-colorings in some runs for p € {0.02,0.025} in each class.

At n = 500 (Tables 4-6), while more computational effort (AMS) is sometimes
needed by TC, the problem is still easy for TC outside of 7, (SR is always 1). At T,
TC is always competitive in terms of SR, especially on the %/ graph where SR = 0.9
(see Table 4). However, the problem is here slightly harder than the n = 200 cases for
TC. This is particularly true on the .% and & graphs where the SR achieved by TC
at T, falls, respectively, to 0.72 and 0.56 (see Tables 6 and 5). DSATUR continues to
produce proper 3-colorings for n = 500 in each class, in all runs when p = 0.006 and
sometimes for %500 0.01-

On large-order graphs (n = 1000, Tables 7-9), TC finds proper 3-colorings in all
the 25 runs for each class whenever p is outside of 7,. In these cases, mean comput-
ing times are still short. At 7;,, TC succeeds in all runs, but only on % and & graphs,
see Tables 7-8 respectively. Indeed, it achieves SR = 0.04 for the .% instance (Ta-
ble 9). Here again, the DSATUR algorithm directly identifies proper 3-colorings in
all runs whenever p = 0.002 and for &’ 000,0.004 and #1000,0.004, and in some runs for
21000,0.004-

Now, we turn our attention to the performance of the reference algorithm SAW.
At n =200, SAW obtained interesting SR values on %/ and & graphs, see Tables 1-2
where SR is always 1 except when p = 0.035 (SR =~ 0.9 and SR ~ 0.85, respec-
tively). For .% graphs (Table 3), while SAW still verifies SR = 1 outside of 7, it
achieves a lower SR around 7: SR = 0.65 for p =0.04 and SR ~ 0.37 when p = 0.035.
This confirms the well known fact that .% graphs may be harder than %/ and & in-
stances, even on small-order graphs. For medium-order graphs (see Tables 4-6), the
SR of SAW is always 1 outside of T, except on Fs00,0.022 (SR ~ 0.94) and F5000.013
(SR~ 0.54). SAW starts to have (great) difficulties in finding proper 3-colorings at 7,
when n = 500. Indeed, SR = 0.1 on the % graph and SR =~ 0.08 for the .# instance.
Furthermore, it seems to fail on the & instance (SR ~ 0). At n = 1000 (Tables 7-9),
SAW always finds proper 3-colorings whenever p is outside of 7, except on two &
graphs (SR ~ 0.96 for p € {0.006,0.01}) and two .% graphs (SR = 0.88 for p =0.012
and SR = 0.48 for p = 0.01). SAW dramatically fails at 7;,: SR ~ 0.04 for the % in-
stance and SAW seems to never solve & and .% graphs (SR = 0). Consequently, one
can conclude that TC reaches always the same or higher success rate than SAW on
all the graphs.



4.2 Deeper experiments around the phase transitions

Tables 1-9 disclose that 3-COL is typically harder at 7, than at 7., 7., T, or T, i.€.
that 7, may be more effective at identifying the hardest instances. To try to verify this
observation, we report deeper experiments with TC in Tables 10—18 for more detailed
p values around 7. Note that this section include 21 new graphs not considered in
Sect. 4.1 (they appear in italic typeface).

Table 10 Small-order % graphs (n = 200): Deeper experiments with TC around 7 (100 runs, 300 000

moves).

p T SR AMS OAMS T (s) or (s)
0.03 1 3376.5 2982.0 <1 <1
0.0325 g 1 8256.4 6963.3 <1 <1
0.035 h 1 14423.6 133718 <1 <1
0.0375 c,h 1 5849.7 3597.3 <1 <1
0.04 c,e,h,w 1 2851.6 21405 <1 <1
0.0425 1 1916.3 1436.7 <1 <1

Table 11 Small-order & graphs (n = 200): Deeper experiments with TC around 7 (100 runs, 300 000

moves).

P T SR AMS ouus T (s)  or(s)
0.03 1 4540.7 39084.8 <1 <1
0.0325 g 1 16 016.6 12633.1 <1 <1
0.035 h 1 11865.1 9946.7 <1 <1
0.0375 c,h 1 55183 5319.6 <1 <1
0.04 e, h,w 1 3699.8 2993.3 <1 <1
0.0425 1 1399.6 1279.6 <1 <1

Table 12 Small-order .% graphs (n = 200): Deeper experiments with TC around 7 (100 runs, 300 000

moves).

p T SR AMS OaMS T (s) or (s)
0.03 1 720.5 718.2 <1 <1
0.0325 1 6018.3 57273 <1 <1
0.035 g.h 1 586364  47428.0 <1 <1
0.0375 h 0.82 78110.1 76 498.8 <1 <1
0.04 c,e,h,w 1 14226.4 13675.2 <1 <1
0.0425 1 14091.3 12096.2 <1 <1

Small-order graphs (n = 200) are still easy, even at 7, see Tables 10-12. Indeed,
SR is always 1 except on %209 0.0375 Where SR = 0.82. Furthermore, mean comput-
ing time of TC is always smaller than a second. Medium-order graphs (n = 500,
Tables 13—15) also seem to be quite easy for TC, even at 7. Indeed, SR is always 1
except on %500,0.014 (0.9), 500,0.014 (0.56), F500,0.014 (0.72), and F500,0.016 (0.64).
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Table 13 Medium-order % graphs (n = 500): Deeper experiments with TC around 7 (50 runs, 300 000

moves).

p T SR AMS oams T (s)  or(s)
0.012 1 12126.5 9510.6 <1 <1
0.014 g,h 0.9 98 080.4 74802.4 1.6 1.1
0.016 c,eh,w 1 16411.1 14708.0 <1 <1
0.018 1 4754.1 24059 <1 <1

Table 14 Medium-order & graphs (n = 500): Deeper experiments with TC around 7 (50 runs, 300 000

moves).

p T SR AMS oaus T (s) or(s)
0.012 1 78529 4524.5 <1 <1
0.014 c¢,g,h 056 1809509 63173.1 2.8 <1
0.016 e, h,w 1 24717.1 20670.7 <1 <1
0.018 1 6913.4 7106.6 <1 <1

Table 15 Medium-order .% graphs (n = 500): Deeper experiments with TC around 7 (50 runs, 300 000

moves).

p T SR AMS oams  T(s)  or(s)
0.012 1 2735.7 1780.9 <1 <1
0.014 g.h 0.72 133391.3 69861.7 2.1 1.1
0.016 c,e, h,w 0.64 148273.7 76569.5 33 1.7
0.018 1 26981.2 28508.1 <1 <1

Table 16 Large-order % graphs (n = 1000): Deeper experiments with TC around 7 (25 runs, 300 000

moves).

p T SR AMS Oams T (s) or (s)
0.006 1 113985.8 78314.6 3.6 24
0.007 g,h 0.04 2368910 0.0 8.3 0.0
0.008 c,e,h,w 1 117 190.8 73166.9 5.7 3.6
0.009 1 23644.5 6916.5 1.5 <1

Table 17 Large-order & graphs (n = 1000): Deeper experiments with TC around 7 (25 runs, 300 000

moves).

p T SR AMS oams T (s) or(s)
0.006 1 132932.7 74 624.1 4.2 23
0.007 g,h 0.08 215655.5 31855.5 8.1 1.0
0.008 c,eh,w 1 102510.7 73566.2 5.1 3.8
0.009 1 26270.6 14541.4 1.7 <1

Table 18 Large-order .# graphs (n = 1000): Deeper experiments with TC around T (25 runs, 300 000

moves).

p T SR AMS OAms T (s) or (s)
0.006 1 229524 14409.0 <1 <1
0.007 g,h 0 - - - -
0.008 c,e,h,w 004 102504.0 0.0 5.7 0.0

0.009 0.48 139301.5  86264.1 9.5 5.8
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Some large-order graphs (n = 1000, Tables 16—18) are especially difficult for TC
within the time limit of 300000 moves. This is particularly true at 7, for all the
instances (since SR < 0.08) and outside of 7, for one .% graph (SR = 0.04 when
p = 0.008). Furthermore, the difficulty also holds outside of 7 in one case, when
p = 0.009 for the .# instance (SR = 0.48).

Table 19 Which 7 measure is the best to identify hard 3-COL instances?

n Graph class
4 & F Best Worst
200 h g h h g c,e,w
500 g,h c,g,h c,e,h,w h c,g ew
1000 g,h g,h c,e,g h,w g,h c,e,w
Best h g h
g c,h c,e,w
Worst c,e,w ew g

Table 19 recalls the most effective T measure from Tables 10-18 depending on
n and the class of graphs. The last three columns (respectively lines) also propose a
ranking of 7., 7., Tg, Ty, and 7, for a particular n value (respectively for a particular
graph class). For instance, 7, is classified as “Best” when n = 200 since “h” appears
more than the other thresholds on the “a = 200” line. Similarly, 7., 7., and 7, are
categorized as “Worst” for n = 200 since they are missing on the “n = 200" line.

From Table 19, one can observe that 7;, is (almost) always the most effective T
measure whatever the value of n or the graph class. Indeed, if we define the overall
score X (for all n values and all graphs) of a T measure as the number of times it
appears in the inner table (intersection of lines 3-5 and columns % —%), we obtain
Xy > X, > 2% > X, (since 8 > 6 >3 > 2). One can then establish the following
overall 7 ranking: 7, >y T, >x T >x T, Where “>y” means “more effective than”.
Consequently, we will mainly use 7, as the phase transition threshold in the rest of
the paper.

4.3 Influence of the problem size n on the problem difficulty

The scalability of TC, i.e. how its performance changes with growing problem size,
can be observed in Tables 20-24 (27 new instances), on graphs respectively outside
of 13, (within 500 000 moves for TC) and around 7, (1 000 000 moves), for various n
values in [250,1500] (see also Sect. 4.5, where we use much larger graph with n up
to 11000 to test the limit of TC).

Tables 20-21 show that graphs of these sizes outside of 7;, are really easy for TC
since SR is always 1. Around 7, (Tables 22-24), the %/ and & graphs are still easy
for TC (SR = 1) but the .% instances become harder when n > 1000 (SR < 0.04).

SAW was checked for scalability only on & graphs in (Eiben et al 1998). While
it reached good SR values outside of 7, (see Table 20), its performance dramatically
falls around 7, when n > 1000 (Table 22).
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Table 20 & graphs: Influence of the problem size outside of 7, (p = 10/n, 50 runs).

; TC (500 000 moves) SAW
SR AMS oavs T (G)  or(s) SR AES
250 1 14873 862.1 <1 <1 1 12500
500 1 35685 20912 <1 <1 1 37500
750 1 59329 25008 <1 <1 1 57000
1000 1 102392  5300.0 1.5 <1 1 100 000
1250 1 132548 63768 23 1.1 0.9 150000
1500 1 211031 92175 44 1.8 09 185500

Table 21 % and .Z graphs: Influence of the problem size on TC outside of 7, (p = 10/, 50 runs, 500 000

moves).
4 F

n
SR AMS oams T() or(s) SR AMS oaus T ()  or(s)
250 1 1186.9 612.5 <1 <1 1 22383 12723 <1 <1
500 1 2885.5 1357.3 <1 <1 1 7915.5 5158.7 <1 <1
750 1 8110.6 4363.4 <1 <1 1 17802.9 13352.0 1.8 1.3
1000 1 97272 4187.5 1.4 <1 1 33667.9 25020.5 4.9 3.6
1250 1 9696.3 42532 1.7 <1 1 68762.2 65591.5 2.1 2.0
1500 1 195284 9281.9 3.9 1.9 1 70217.6 48963.0 2.6 1.8

Table 22 & graphs: Influence of the problem size around 7, (p = 8/n, 25 runs).

n TC (1000000 moves) SAW
SR AMS Cams T(s) or(s) SR AES
250 1 5256.3 3524.6 <1 <1 1 28500
500 1 207744 13021.1 <1 <1 0.88 200000
750 1 44542.8 34333.0 32 2.4 0.52 300000
1000 1 102510.7 73566.2 5.1 3.8 0.16 418500
1250 1 130037.1 184316.4 154 21.3 0.20 400000
1500 1 172020.7 1544325 252 22.5 0.08 771900

Table 23 7 graphs: Influence of the problem size on TC around 1, (p = 8/n, 25 runs, 1000 000 moves).

n SR AMS oas TG  or(s)
250 1 24327 1376.1 <1 <1
500 1 176374 178186 <1 <1
750 1 514673  34610.7 36 24
1000 1 1171908  73166.9 5.7 36
1250 1 118455.1 883682  13.9 104
1500 1 1773173 1799393 34 34

Table 24 .7 graphs: Influence of the problem size on TC around 7, (p = 8/n, 25 runs, 1000 000 moves).

n SR AMS OAMS T (S) or (S)
250 1 321279.1 241163.2 6.2 4.7
500 1 306117.2  234178.1 22 1.7
750  0.24 2197885 171377.6 2.1 1.7
1000  0.04 102504.0 0.0 5.7 0.0
1250 0 - - - -
1500 0 - - - -




4.4 Impact of longer runs on the solution performance

We just observed that, in some or all runs, TC fails to find a proper 3-coloring for
some graphs within 300000 moves (see Tables 12-18 in Sect. 4.2) or 1000000
moves (Table 24 in Sect. 4.3). We study here the effect of giving more search time
to TC, i.e. if longer runs can increase its success rates for solving these instances.
So, we first extend the maximum number of moves per run to 1 000000 for graphs
in Sect. 4.2 and rerun TC whenever SR < 1 for TC in Tables 12-18. In Table 25, SR,
again lists the SR achieved by TC in Tables 12—18 (short runs with 300 000 moves).
Similarly, SR;, AMS;, and T; are for 25 long runs (i.e. within 1 000 000 moves).

Table 25 confirms that small and medium-order graphs (n < 500) are easily solved
now by TC, even around 7, (SR; > 0.96). Significant improvements can also be ob-
served on large-order % and & graphs (n = 1000). Nevertheless, the %/ instance
is still quite challenging (SR; = 0.28). The large-order .% graphs remain difficult to
color, even if some improvements are sometimes observed. Indeed, no improvement
at all was possible when p = 0.008 (SR; = SKy).

Note that Eiben et al (1998) reported one similar experiment using only one graph
(£1000,0.008): The SR of SAW increased from 0 within 300 000 evaluations to 0.44
within 1000 000 evaluations (AES = 407 283)3.

Table 25 Long TC runs on the hardest instances from Tables 12-18 where SR < 1 (25 runs, 1000000
moves).

Graph T SRS SR[ AMS[ GAMS, T (S) oy, (S)
200.0.0375 h 0.82 1 147017.4  171001.0 1.7 2.0
500,0.014 g,h 090 1 196277.7 156315.5 3.0 2.3
&500,0.014 c,g,h 056 096 304047.6 235099.6 4.7 3.6
500.0.014 g,h 072 1 2939279 171530.3 4.5 2.6
Fsmools  cehw 064 096 3299839 2703855 7.1 5.8
21000,0.007 g h 0.04 028 601305.1 1305234 219 4.5
&1000,0.007 g.h 0.08 0.60 6191957 2542418 22.0 9.0
F1000,0.007 g h 0 040 470637.1 320741.1 3.7 2.4
Z10000.008 C,e,hyw 004 0.04 102504.0 0.0 5.7 0.0
F1000,0.009 048 0.72  410530.3  254225.0 12.1 7.2

Since TC still fails to reach SR = 1 within 1 000 000 moves for 10 instances (4 in
Table 24 and 7 in Table 25, but . %] 00,0.008 is considered in both tables), we remove
this limit and allow TC to run until it finds a proper 3-coloring. Results are sum-
marized in Tables 26-27*. “MAXINT” entries in Table 27 indicate values larger than
the maximal integer authorized by the system (i.e. 4294 967 295). In these cases, 7.
indicates the minimum time needed to reach a proper 3-coloring.

3 However, note that “0.44” is contradictory with Fig. 14 in (Eiben et al 1998). Indeed, the plot rather
suggests 0.16 as already indicated in Table 22.

4 For runs without time limit, we only report (mean) values based on 5 executions since no significant
differences were observed (on easy instances) with a larger number of runs.
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Table 26 Achieving SR = 1 with TC on the hardest instances from Table 25 where SR; < 1 (5 runs, without
time limit).

Graph T SR] SR AMSe OAMS. T (S) OT,, (9)
&500.0.014 c,8h 0.96 1 693 830.4 641679.3 22 2.1
Fsooots e hw 096 1 450009.4 430902.2 34 32

21000,0.007 g, h 0.28 2904052.2 3138476.6 28.5 31.0

1
&1000,0.007 g, h 0.60 1 1161061.6 1209402.4 11.6 11.7
F1000,0.007 g h 0.40 1 1888195.4 1413201.3 11.2 8.2
Z10000.008  C,e,h,w  0.04 1 298129024.1 165232840.6 39837 22052
F1000,0.009 0.72 1 633 880.2 523436.4 11.6 9.5

Table 27 Achieving SR = 1 with TC around 7;, (p = 8/n) on the hardest .% instances from Table 24 where
SR; < 1 (5 runs, without time limit).

n SR] SR AMS., OAMSo T (S) (o8 (s)
750 0.24 1 11933517.1 9686691.4 114.5 92.3
1000 0.04 1 298129 024.1 165232 840.6 3983.7 2205.2
1250 0 1 MAXINT - > 36744 -
1500 O 1 MAXINT - >454662.9 -

Two main observations can be made from Tables 26-27. First, all graphs are quite
easy for TC whenever p # 8/n, see Table 26 where AMS.. < 2904052 in this case.
Second, only the large-order .%# instances constitute a real challenge for TC whenever
p = 8/n, see Table 27 where AMS.. > 298129024 for n > 1000.

4.5 How far can we go with TC?

The scalability of TC was studied in Sect. 4.3 for graphs with up to 1 500 vertices (see
also Sect. 4.4 for longer runs, with or without time limit), as in (Eiben et al 1998) for
SAW. In this section, we report additional results for TC in Tables 28-36 for some n
values in [2000, 11000} around and outside of the threshold 7, to try to determine
the limits of TC (95 new graphs).

Tables 28-30 show computational results outside of the phase transition with a
time limit of 500 000 moves. All % and & instances, and .% graphs where n < 2500,
are really easy for TC (since SR = 1 in this cases). Note that TC also performs well
for F3000,10/» since SR = 0.68. The problem becomes harder only on .7 instances
from n = 3500 since the best SR achieved by TC when n > 3500 falls to 0.30. So,
Table 30 clearly confirms that .% graphs are harder than %/ and & instances, even
outside of 7.

5> The graph generator employed to build the graphs is restricted to n < 5000. So, we just modified two
constants of the generator to generate instances with n > 5000.



Table 28 % graphs: The limits of TC outside of 7;, (p = 10/n, 50 runs, 500 000 moves).

n SR AMS OAMS T (S) or (S)
2000 1 28506.6  12760.3 1.3 <1
2500 1 26098.0 9887.6 1.6 <1
3000 1 43744.6  13434.0 3.2 <1
3500 1 60434.0 23081.1 2.0 <1
4000 1 691747 25391.7 2.8 1.0
4500 1 673403 264222 33 1.3
5000 1 82123.8 29815.0 4.5 1.5
5500 1 88009.3  26729.8 4.6 1.4
6000 1 104856.0  32455.8 6.9 2.1
6500 1 122111.1  42108.0 8.3 2.8
7000 1 1231619  41666.6 8.4 2.8
7500 1 167213.7  57518.7 13.1 4.5
8000 1 1689172  56505.6 13.2 4.4
8500 1 170589.2  46071.5 139 35
9000 1 216444.0 70894.6 19.3 6.2
9500 1 2214158 713464 220 6.8

10000 1 199860.9 69193.1 19.5 6.7
10500 1 223878.2 689282 228 6.9
11000 1 264433.7 781433 28.5 8.3

Table 29 & graphs: The limits of TC outside of 7, (p = 10/n, 50 runs, 500 000 moves).

n SR AMS OAMS T (S) or (S)
2000 1 315448 173274 1.5 <1
2500 1 372825 17758.8 22 1.1
3000 1 41050.8 167143 2.8 1.2
3500 1 595444  19657.7 2.4 <1
4000 1 66063.5 264739 2.6 <1
4500 1 69276.8 25403.4 32 1.1
5000 1 101027.9 34619.6 5.4 1.8
5500 1 99081.7 330514 5.5 1.8
6000 1 109455.7 44881.8 6.6 2.6
6500 1 1218059  36992.5 7.7 22
7000 1 123962.3  43498.6 8.6 29
7500 1 123982.2  45346.8 9.1 3.1
8000 1 145698.6  45759.8 11.8 3.6
8500 1 172399.4 54661.4 14.7 4.5
9000 1 185468.3 53877.2 16.9 4.8
9500 1 215814.2 69888.2  20.7 6.3

10000 1 211838.6 71073.1 21.5 7.0
10500 1 218459.6 595382  22.1 6.1
1

11000 268026.0 95549.2  29.8 10.3
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Table 30 .% graphs: The limits of TC outside of 7, (p = 10/n, 50 runs, 500 000 moves).

n SR AMS OAMS T (9) or (S)
2000 1 144239.7 89756.7 11.2 6.9
2500 1 155953.6 918729 15.2 8.9
3000 0.68 270358.6 129986.0 7.7 3.7
3500 028 262949.6 110083.5 9.2 3.8
4000 028 3116269 893543 11.3 32
4500 030 3123569 106744.1 15.8 54
5000 022 3264513 111325.0 16.8 5.4
5500 0.28 340731.7 112833.7 20.0 6.6
6000 020 3889583 83763.7 24.1 5.1
6500 0.04 3592215 90857.5 25.0 5.8
7000 0.04 375040.5 252175 24.6 1.4
7500 0.04 456035.5 24982.5 36.0 1.9
8000 0.06 4397473 56787.3 35.6 4.4
8500 0.04 334201.0 78082.0 27.6 6.4
9000 O - - - -
9500 0O - - - -

10000 0O - - - -
10500 0O - - - -
11000 0O - - - -

Tables 31-32 shows results for “longer” runs, with a time limit of 1000000
moves (Table 31) or without time limit (Table 32), to achieve SR = 1 on the hard-
est .% instances from Table 30. One observes that a solution is always found but,
contrary to % and & instances, the computation effort required for 3-coloring large
F graphs properly can be very high (up to more than 59 million moves in average).

Table 31 Long TC runs outside of 7, (p = 10/n) on the hardest .% instances from Table 30 where SR < 1
(25 runs, 1000 000 moves).

n SRy SR] AMS[ GAMS, T[ (s) GT[ (s)
3000 0.68 1 3959503 2724232 31.6 21.7
3500 0.28 0.44 425406.7 241345.6 14.9 8.3
4000 0.28 044 5686884 269936.2 23.7 11.2
4500 030 080 518964.3 174691.5 24.7 8.3
5000 0.22 048 589879.2 266224.1 31.2 14.1

5500 0.28 048 6063783  217482.9 34.0 12.1
6000 0.20 0.52 6232414 194497.9 383 12.1
6500 0.04 0.12 6305363 139949.1 40.6 8.8
7000 0.04 024 789536.0 159775.2 55.1 10.8
7500 0.04 0.12 623690.0 189473.5 453 13.7
8000 0.06 0.24 612446.7 2146229 48.1 16.8
8500 0.04 0.16 7032823 133815.8 59.1 11.0

9000 O 0.08 6841275 216838.5 64.5 20.5
9500 O 0 - - - -
10000 0O 0 - - - -
10500 0O 0.04  787970.0 0.0 81.7 0.0
11000 0 0 - - - -
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Table 32 Achieving SR = 1 with TC on the hardest .% instances from Table 31 where SR; < 1 (5 runs,
without time limit).

n SR] SR AMS., OAMS. T (S) OT,, (S)
3500 044 1 1423879.8 672368.9 52.1 24.5
4000 044 1 1161122.8 801233.9 46.0 31.8
4500 0.8 1 700484.6 380628.5 35.2 19.1
5000 048 1 1315440.6 766 691.4 65.5 37.9
5500 048 1 1011681.4 933814.3 55.7 49.8
6000 052 1 1468 846.8 759937.0 90.0 46.6
6500 0.12 1 4705 684.0 2950583.4 291.6 182.9
7000 024 1 3781609.5 1832451.7 259.3 125.5
7500 0.12 1 7628363.0 8251686.1 583.0 630.0
8000 024 1 1522375.0 721937.9 122.0 58.1
8500 0.16 1 2118416.3 1432638.0 182.6 123.1
9000 0.08 1 3428184.8 2060651.2 301.4 179.8
9500 O 1 12454 689.0 4959205.0 1160.5 461.9

10000 O 1 59920576.0 50207203.5 5870.1 4909.1
10500 0.04 1 6780762.5 875675.5 690.2 90.5
11000 0 1 10497 934.0 51811423 1103.2 546.2

Tables 33—34 show computational results around the phase transition for %7 and &
instances within a time limit of 1 000 000 moves. Note that no result is reported here
(i.e. around 1y) for the .% graphs since, as already showed in Table 24 (Sect. 4.3), TC
cannot solve such instances once n > 1250 within the time limit of 1 000 000 moves.
Indeed, Table 27 (Sect. 4.4) indicates that TC needs more than 4 billion moves (about
126 hours) to solve #|50g/,- This seems to indicate that, for .# graphs around 7,
Z1500,8/n Would be the largest graph that can be colored by TC.

Table 33 % graphs: The limits of TC around 7, (p = 8/n, 25 runs, 1000 000 moves).

n SR AMS OAMS T (S) or (S)
2000 1 312539.2 160692.6 8.0 39
2500 1 474737.1  204351.5 24.0 9.9
3000 1 3282323 1375273 12.8 52
3500 0.72 5565149 230236.4 11.2 4.7
4000 0.68 6896079 182578.8 16.3 4.2
4500 0.6 610822.6  205490.8 17.6 6.0
5000 052 680168.1 244471.0 23.6 8.5
5500 0.68 6049935 200738.5 18.8 6.2
6000 036 7398709 120713.8 28.3 4.6
6500 0.28 854454.0 104911.0 30.4 4.0
7000 0.12 762356.7 152977.1 30.0 59
7500 0.04 947253.0 0.0 37.7 0.0
8000 0.08 897777.0 2250.0 443 <1
8500 032 8113444 152395.1 41.5 8.0
9000 0.08 8587725 70563.5  45.1 3.1
9500 0.04 872204.0 00 50.8 0.0

10000 0.04 790561.0 0.0 441 0.0
10500 0.04 915827.0 00 543 0.0

11000 0O - - - -
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Table 34 & graphs: The limits of TC around 1, (p = 8/n, 25 runs, 1000 000 moves).

n SR AMS OAMS T (9) or (S)
2000 096 5047633 212903.3 12.2 52
2500 092 426471.0 203155.8 12.9 6.3
3000 0.80 493869.6 212989.6 10.1 4.4
3500 056 6261144 214233.8 15.4 52
4000 0.60 540508.9 169444.7 15.1 5.0
4500 0.64 569527.4 187684.6 18.1 5.7
5000 028 638217.7 206569.0 227 7.6
5500 0.64 5847195 169439.6 18.8 5.5
6000 036 7554284 1797604  26.7 6.1
6500 0.16 7594103 38527.2 27.8 1.5
7000 0.16 7644255 170939.2  30.1 7.0
7500 0.16 689463.3 78321.7 27.3 4.0

8000 0.16 840018.0 1546160  39.5 79
8500 0.08 884325.0 10851.0 432 <1

9000 0.12 761693.7 155293.8 452 6.9
9500 0.04 947668.0 0.0 46.7 0.0
10000  0.04  857340.0 00 490 0.0
10500 0O - - - -
11000 0 - - - -

According to Table 33, TC still always solves easily % graphs around 7}, up to
n = 3000 since SR = 1 in these cases. Furthermore, TC also performs quite well on
larger 7/ instances since SR > 0.52 for n up to 5500. & graphs (see Table 34) start
here to be a little bit harder than %/ instances since TC never reached SR = 1 but it
performs well up to n = 5500 (SR > 0.56 except for &5 ,3/,)- The performance of
TC falls below 0.5 only for the largest graphs (n > 6000 and for &5090,8/4)-

Table 35 Achieving SR = 1 with TC around 7, (p = 8/n) on the hardest % instances from Table 33
(5 runs, without time limit).

n SR] SR AMS., OAMS. T (S) or,, (S)
3500 0.72 1 674481.0 524132.0 16.3 125
4000 0.68 1 718282.2 577635.5 17.4 13.0
4500 0.60 1 735476.4 395813.7 20.3 10.9
5000 0.52 1 1299003.3 1050951.6 29.2 17.2
5500 0.68 1 1377980.4 406716.0 40.5 12.1
6000 0.36 1 1639610.8 554939.4 555 21.0
6500 0.28 1 1887605.3 929657.3 69.1 32.7
7000 0.12 1 1958313.0 753376.6 734 27.1
7500 0.04 1 35411620 23091809  126.6 71.1
8000 0.08 1 2359020.8 19474526 101.0 78.0
8500 0.32 1 2543023.5 13295795 124.8 63.8
9000 0.08 1 29374350 1129824.7 149.7 59.1
9500 0.04 1 2407969.5 975149.0 1299 53.7

10000  0.04 1 2969634.0 14954552  180.6 91.7
10500  0.04 1 4426329.0 39035364 2464 207.3
1

11000 0 4877196.0 2224861.0 295.1 130.7
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Table 36 Achieving SR = 1 with TC around 7, (p = 8/n) on the hardest & instances from Table 34 (5 runs,
without time limit).

n SR] SR AMS. OAMS. T (S) Or,, (S)
2000 0.96 1 511059.2 277824.1 13.2 6.9
2500 0.92 1 464 184.2 343839.3 14.8 10.8
3000 0.80 1 687144.4 310374.7 27.1 12.0
3500 0.56 1 1032754.4 823348.6 253 19.6
4000 0.60 1 868927.4 378278.6 25.2 10.9
4500 0.64 1 844 836.2 481748.7 26.3 14.5
5000 0.28 1 20975275 10475614 725 36.1
5500 0.64 1 2100852.5 894367.8 57.0 22.7
6000 0.36 1 1144047.0 245704.9 40.1 9.1
6500 0.16 1 21231583 1409654.3 84.1 56.6
7000 0.16 1 1969999.4  1149751.0 81.9 46.0
7500 0.16 1 2247856.3 763401.7 91.9 30.0
8000 0.16 1 1997386.0 1203102.3 86.5 529
8500 0.08 1 3118057.0 1693211.6 151.4 81.2
9000 0.12 1 32437063 38192144 1755 204.6
9500 0.04 1 32697925 5272714 1657 243

10000  0.04 1 3582580.8 1845239.8 196.5 98.6
10500 0O 1 4844833.0 13460139  299.5 82.8
1

11000 0 4904942.0 12224023 294.1 80.7

Tables 35-36 show results for runs without time limit on the graphs from Ta-
bles 33-34 where SR < 1. One observes that a solution is always found for each run
of TC, even for the largest instances with 11 000 vertices. This indicates that TC is
probably able to color % and & graphs with much larger n, even around the phase
transition.

5 Conclusions

We present an experimental investigation of a simple tabu search algorithm for color-
ing random 3-colorable graphs, studying three well-known classes of graphs (% ni-
form, &quipartite, and .#lat) outside of or around the phase transition thresholds.
The main findings of this study can be summarized as follows.

Qutside of the phase transition thresholds

The simple tabu search algorithm can color any graph (%, &, %) with 200 < n <
11000 vertices at each run. Moreover, as already observed in other studies, .% graphs
are more difficult to color than %/ and & graphs. More precisely:

— For the % and & classes, any graph with up to 11000 vertices can very easily
be colored within 500000 moves (less than 30 seconds in average). This suggests
that TC is probably able to color much larger (n >> 11000) % and & graphs
within reasonable time.
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— For the .% class, a solution can always be found for graphs with n < 3000 in av-
erage within 1 million moves (less than 60 seconds). Larger graphs with 3500 <
n < 11000 can also always be colored if more computing time is allowed. Typi-
cally this can be achieved in average with 60 millions of moves (about 1.5 hours).

Around the phase transition thresholds

The simple tabu search algorithm can color any % and & graph with 200 < n <
11000 vertices at each run. & graphs are a little more difficult to color than % graphs.
It is very difficult to color .% graphs with more than 1500 vertices. More precisely:

— For the % and & classes, any graph with up to 11000 vertices can be colored in
average within 5 million moves (less than 5 minutes). This suggests that TC is
probably able to color still larger (n >> 11000) % and & graphs within reason-
able time.

— For the .Z class, with a time limit of 1 million moves (a few seconds), a proper
3-coloring can always be found for graphs with up to 500 vertices, a solution can
occasionally be found for graphs with 500 < n < 1000. .% graphs with up to 1500
vertices can also always be colored if no time limit is imposed. However, this may
require up to more than 4 billion moves (about 126 hours). This suggests that .#
graphs larger than 1500 vertices around the phase transition thresholds constitute
a real challenge for TC, but very probably for many (k-)coloring algorithms.

Phase transition thresholds

Finally, concerning the different phase transition thresholds reported in the litera-
ture, the experimental results coincide globally well with what is predicted by these
thresholds as to the relative hardness of a given graph. Nevertheless, it is observed
that the threshold 7, proposed in (Eiben, van der Hauw, and van Hemert 1998) is bet-
ter suited to locate the phase transitions compared with other T measures. To be more
precise, the lower bound of 7, (7/n) seems more adequate for % and & instances
while the whole interval (7/n < p < 8/n) remains valid for (sufficiently large) .#
graphs. Moreover, a ranking among these thresholds is proposed based on the com-
putational observations in Sect. 4.2.
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