Dual Probability Learning Based Local Search for the Task Assignment Problem
Zuocheng Li, Lixin Tang, Senior Member, IEEE, and Jin-Kao Hao

Abstract—The task assignment problem (TAP) is concerned with assigning a set of tasks to a set of agents subject to the limited processing and memory capacities of each agent. The objective to be minimized is the total assignment cost and total communication cost. TAP is a relevant model for many practical applications, yet solving the problem is computationally challenging. Most of current metaheuristic algorithms for TAP adopt population based search frameworks, whose search behaviors are usually difficult to analyze and understand due to their complex features. In this work, unlike previous population based solution methods, we concentrate on single trajectory stochastic local search model to solve TAP. Specially, we consider TAP from the perspective of a grouping problem and introduce the first probability learning based local search algorithm for the problem. The proposed algorithm relies on a dual probability learning procedure to discover interesting search regions and a gain-based neighborhood search procedure to intensively exploit a given search region. We perform extensive computational experiments on a set of 180 benchmark instances with the proposed algorithm as well as the general mixed integer programming solver CPLEX. We assess the composing ingredients of the proposed algorithm to shed light on their impacts on the performance of the algorithm.

Note to Practitioners—This work is motivated by the problem of program modules designing and task allocation in parallel and distribution systems. It can also be applied to deal with job (task) grouping problems in practical industrial applications. This paper presents a novel and effective learning-based local search algorithm to obtain high-quality solutions of the considered problem. Results of numerical experiments and comparisons show that our algorithm can achieve good search performances on problem instances of different scales and difficulties. Afterwards, we use the proposed solution method to solve a real-life open-order slab assignment problem, which is derived from the production planning of silicon steel for an iron and steel company. The learning techniques of the proposed algorithm are of general interest and can be used in search algorithms for solving other real-life optimization problems with grouping features. For future research, we will design solution methods based on these learning techniques to address other practical optimization problems.

Index Terms—Task assignment, learning-based search, neighborhood search.

This research was partially supported by the Fund for Innovative Research Groups of the National Natural Science Foundation of China (71621061), the Major International Joint Research Project of the National Natural Science Foundation of China (71520107004), the Major Program of National Natural Science Foundation of China (71790614), the National Natural Science Foundation of China (716202025) and the 111 Project (B160909). (Corresponding author: Lixin Tang)

Z. Li is with Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China (e-mail: zuocheng_li@163.com).

L. Tang is with Institute of Industrial & Systems Engineering, Northeastern University, Shenyang, 110819, China (e-mail: lixin.tang@mail.neu.edu.cn).

J.K. Hao is with LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France (e-mail: jin-kao.hao@univ-angers.fr and Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France).

Manuscript received Feb. 2020; revised Aug. 2020; accepted Oct. 2020.

I. INTRODUCTION

The task assignment problem (TAP) [1] involves assigning N tasks to M agents subject to the constrained processing capability and memory capacity of each agent. The objective is to minimize the total cost consisting of two parts: 1) the total assignment cost of assigning tasks to agents, and 2) the total communication cost between tasks that are assigned to different agents.

Formally, let $\mathbb{N} = \{1,\ldots,N\}$ be the set of tasks, $\mathbb{M} = \{1,\ldots,M\}$ the set of agents, c_{ij} the assignment cost of assigning task $i \in \mathbb{N}$ to agent $j \in \mathbb{M}$, e_{ik} the communication cost between tasks $i \in \mathbb{N}$ and $k \in \mathbb{N}$ when they are assigned to different agents, p_i the processing requirement of task i, P_j the processing capacity of agent j, and Q_j the memory capacity of agent j. TAP can be formulated as follows [2]–[4]:

$$
\text{Min} \quad \sum_{i=1}^{N} \sum_{j=1}^{M} c_{ij}x_{ij} + \sum_{i=1}^{N-1} \sum_{k=i+1}^{N} e_{ik} \left(1 - \sum_{l=1}^{M} x_{il}x_{kl} \right) \\
\text{subject to} \quad \\
\sum_{j=1}^{M} x_{ij} = 1, \forall i \in \mathbb{N}, \\
\sum_{i=1}^{N} p_{i}x_{ij} \leq P_j, \forall j \in \mathbb{M}, \\
\sum_{i=1}^{N} q_{i}x_{ij} \leq Q_j, \forall j \in \mathbb{M}, \\
x_{ij} \in \{0, 1\}, \forall i \in \mathbb{N}, j \in \mathbb{M},
$$

NOMENCLATURE

- BKS: best known solution of a TAP instance
- CI: confidence interval
- DOE: design of experiment
- DPLS: dual probability learning local search approach
- ETC: expected time to compute matrix
- GNS: gain-based neighborhood search procedure
- HBMO: honeybee mating optimization
- IDE: improved differential evolution
- JPD: joint probability distribution
- LPD: local probability distribution
- MPD: marginal probability distribution
- NGHS: harmony search algorithm
- OPT: optimal solution of certain instance
- OSAP: open-order slab assignment problem
- PLS: probability learning local search method
- TAP: task assignment problem
- TIG: task interaction graph

TAP task interaction graph

TAP task assignment problem

OSAP open-order slab assignment problem

Note to Practitioners—This work is motivated by the problem of program modules designing and task allocation in parallel and distribution systems. This paper presents a novel and effective learning-based local search algorithm to obtain high-quality solutions of the considered problem. Results of numerical experiments and comparisons show that our algorithm can achieve good search performances on problem instances of different scales and difficulties. Afterwards, we use the proposed solution method to solve a real-life open-order slab assignment problem, which is derived from the production planning of silicon steel for an iron and steel company. The learning techniques of the proposed algorithm are of general interest and can be used in search algorithms for solving other real-life optimization problems with grouping features. For future research, we will design solution methods based on these learning techniques to address other practical optimization problems.
where \(x_{ij} \) is the decision variable indicating whether task \(i \) is assigned to agent \(j \). Objective (1) is to minimize the total cost where the two terms correspond to the total assignment cost and the total communication cost respectively. Constraints (2) require that each task can only be assigned to a unique agent. Constraints (3) and (4) ensure that the total processing and memory requirements of the tasks assigned to an agent must be less than the corresponding capacities of the agent. Constraints (5) define the binary decision variables.

TAP is encountered in a number of real-life applications, such as program modules designing [5], community-aware task allocation [6], multirobot task allocation [7] and naval task grouping [8]. TAP has also a number of variants with regard to different practical scenarios (see the review of Section II). Next, we share a real-life application that can be described by the model of TAP.

Over the past 3 years, the authors conducted a real-life application project for an iron and steel company in Hebei, China. Our work was to make the plant-wide production planning for silicon steel\(^1\). As shown in Fig. 1, the production of the silicon steel involves multi-stage processes, i.e., ironmaking, steelmaking-continuous casting, hot rolling and cold rolling. The company uses make-to-order strategy and the production planning depends closely on customer orders. Due to the batch features and the uncertainties of the production process, slabs coming out from the steelmaking-continuous casting may not perfectly match with orders. Thereby, open-order slabs, which do not belong to any orders, are inevitably created. The undesirable open-order slabs will increase the inventory cost and block the production process. Hence, we propose to consider an open-order slab assignment problem (OSAP), which can be modeled as TAP. In OSAP, the sets of open-order slabs (tasks) and orders (agents) are identified first. And then, the cutting cost (assignment cost) of matching each open-order slab with each order is calculated. We also consider another kind of cutting cost (communication cost), concerned with two open-order slabs stemming from the same original slab. There is a limited weight (memory capacity) for each order. Moreover, the assigned slabs for each order that have not arrived at inventory yard must be smaller than a given threshold value (processing capacity), to guarantee due dates and improve customer satisfactions. In this paper, OSAP is used as a case study as detailed in Section V.

In spite of its importance and application focuses, solving TAP is computationally challenging because the problem is known to be NP-hard even when only three agents are considered [9], [10]. In this sense, exact algorithms are limited to solve small-sized TAP instances. For large instances, metaheuristics whose goals are to find high-quality solutions within an acceptable computation time frame are preferred. Generally, metaheuristics for combinatorial optimization are classified as single trajectory method and population based method [11]. In the search space, the former builds a trajectory based on which a single solution is produced at each iteration. The latter, on the contrary, uses a search model to describe the emergence phenomenon of collective intelligence and maintains a set of solutions during the search. The performance of population based methods depends strongly on search models. However, it is usually difficult to select the most suitable search models, since there are still no universal conclusions on this issue [11]. Meanwhile, the designs of components for population based methods are complex, which should account for both search behavior and problem-specific knowledge [12], [13]. Moreover, population based methods are usually time consuming because they generally require a large number of objective function evaluations, especially, in some complex applications [14], [15]. As we observe from the literature review in Section II, most existing metaheuristic algorithms for TAP adopt population based search models. As such, these algorithms are often highly complex and their behaviors are difficult to analyze and understand. In this work, unlike population based solution methods, we focus on the single trajectory stochastic local search framework [16], which has shown to be a powerful tool for solving a great number of hard combinatorial problems including various assignment problems [17]–[19].

Machine learning has shown powerful ability for improving different optimization methods [20]. It can structure valuable information and so guides metaheuristics to find better solutions [21]. In existing learning based metaheuristics, probability learning method, which adopts a probability model to depict the distribution of promising search regions, has shown good performance for solving a number of optimization problems [22]. In general, the probability learning method first estimates the probability model from high-quality solutions and then generates new solutions using sampling operations. In this sense, it has relevant theoretical foundations from the probability theory perspectives. Specially, we investigate a dual probability learning local search approach (DPLS), which is inspired by and extends the recent probability learning local search method (PLS) [23], [24] designed for solving the class of so-called grouping problems [25].

Indeed, TAP can be considered as a special grouping problem where we want to create groups of tasks for the given agents subject to respecting the given constraints while optimizing the objective of the problem. From such a perspective, we are interested in finding useful information that can help us to determine task-to-agent assignment (i.e., which task should be assigned to which agent and which tasks should stay together). As shown in [23], [24], PLS is a relevant method that employs learning techniques to acquire knowledge (in

\(^1\)Silicon steel is usually used as magnetic materials for electric motors, transformers, electric instruments, etc.

Fig. 1. Sketch of the production process of silicon steel.
TAP as well as its variants have been extensively used to model several real-life applications. Lee [26] presented a number of variants of TAP with respect to different practical scenarios. Hamam and Hindi [5] adopted TAP to formulate the program modules designing problem in communication networks. Wang and Jiang [6] established the community-aware task allocation model based on a TAP variant. Lee et al. [7] used TAP to formulate a kind of multi-robot task allocation problem, so as to enhance the overall performance of the multi-robot system. Karasakal et al. [8] employed the basic model of TAP to formulate the sector allocation problem in the naval task grouping area. TAP was also extended to address other practical applications, such as real-time task allocation in software engineering projects [32], reliability-oriented task assignment in distributed systems [33] and task assignment in mobile agent networks [34]. The above studies reveal the practical values of TAP, indicating that developing effective solution methods for solving the problem is both necessary and meaningful.

In general, existing solution methods for TAP are classified as exact algorithms and metaheuristic algorithms. Karasakal et al. [8] proposed a branch and bound algorithm for a naval task grouping application considered as a kind of TAP. Ernst et al. [9] presented exact algorithms to solve the uncapacitated and capacitated TAP and introduced a number of integer linear programming formulations and a column generation formulation. Li et al. [27] proposed a logarithmic method to reduce the numbers of binary variables and the inequality constraints in solving TAP. Their algorithms can achieve good performance for instances with 10, 20 and 30 tasks. Kamer and Uçar [30] presented an exact algorithm based on the A* search algorithm for the uncapacitated TAP. One notices that existing exact algorithms are usually limited to small-sized problems.

In recent years, various metaheuristic algorithms have been used to solve TAP approximately. Kang and He [2] proposed a honeybee mating optimization (HBMO) algorithm for TAP, where they introduced a gain-based improvement approach to strengthen the local search ability of HBMO. Zou et al. [3] reported a harmony search algorithm (NGHS), in which a normalized penalty function method was used to handle the constraints. Zou et al. [4] developed an improved differential evolution (IDE) for TAP, wherein they presented a adaptive mechanism to adjust the mutation and crossover operators of IDE. Other metaheuristics, such as simulated annealing (SA) [5] and variable neighborhood search [29] were also proposed to solve TAP.

As reviewed above, most existing metaheuristic algorithms for TAP adopt the population based search frameworks, whose search behaviors are guided by certain relative relationships among the solutions of the population. However, there may be short of analysis on the distributions of promising search regions during the search process. In this work, we advance the state-of-the-art of solving TAP by proposing a new probability learning based local search algorithm.
III. DUAL PROBABILITY LEARNING BASED LOCAL SEARCH FOR TAP

In DPLS, we adopt an agent-based solution representation with an integer vector \(\pi \) where \(\pi_j = j \) indicates that task \(i \) is assigned to agent \(j \). For example, \(\pi = [1, 3, 1, 3, 2] \) represents the assignment where tasks 1 and 3 are assigned to agent 1, tasks 2 and 4 are assigned to agent 3, and task 5 is assigned to agent 2. Based on this solution representation, the components of DPLS including dual probability learning and GNS explore the solution space of TAP. Below, we present the general scheme of the proposed DPLS algorithm and then its components.

A. General Scheme

DPLS considers its search process as a special online active learning [35]. During the search process, problem-specific knowledge is learnt online via its dual probability learning procedure (see Section III-B). The learnt information, which is recorded in the adopted probability models (distributions), is then used to guide the algorithm toward promising search regions. In the dual probability learning, a marginal probability distribution (MPD) and a joint probability distribution (JPD) are applied for the global level learning, whereas a local probability distribution (LPD) is employed for the local level learning. In addition to the component of the dual probability learning, DPLS uses a powerful local search method (i.e., GNS, see Section III-E) to intensively examine a given region identified by the dual probability learning. As such, DPLS iteratively explores the given search space by alternating between the dual probability learning and GNS components to attain a suitable balance of search intensification and diversification.

Let \(t_{\text{Max}} \) be the maximum generation of DPLS, \(mpro_t = [mpro_{t,j,i}]_{M \times N} \) and \(cpro_t = [cpro_{t,j,i}]_{N \times N} \) the probability distributions of MPD and JPD at generation \(t \), \(lpro_t = [lpro_{t,j,i}]_{M \times N} \) the probability distribution of LPD. \(A_t \), the solution generated by sampling MPD and JPD, \(B_t \) the solution generated by sampling LPD, \(S_t \) the solution selected from \(A_t \) and \(B_t \), \(\hat{S}_t \) the improved solution produced from \(S_t \) by using GNS, \(As \) the predetermined size of the external archive, \(ExA_t \) the external archive (\(t \geq As \), if \(t < As \) then \(As = t \)), and \(gBest \) the best feasible solution found so far by DPLS. Note that \(cpro_{t,j,i} \) represents the probability of tasks \(i \) and \(k \) that are assigned to the same agent, while \(mpro_{t,j,i} \) and \(lpro_{t,j,i} \) represent the probability of task \(i \) selects agent \(j \). Then the proposed DPLS algorithm for TAP is presented in Algorithm 1 with its flowchart shown in Fig. 2.

As Algorithm 1 shows, DPLS is driven by the interactions of the dual probability learning and GNS (Lines 11 to 20). At each generation, MPD and JPD are learnt (updated) by \(\hat{S}_t \) and solutions in \(ExA_t \) (Lines 14 to 15). Since \(\hat{S}_t \) and \(ExA_t \) are dynamically updated along with the search process of DPLS, they always consist of high-quality solutions. MPD and JPD can thus reveal specific knowledge of the problem instance and search behavior of DPLS at a global level. It is probable, however, that \(ExA_t \) is not updated for a number of iterations of DPLS. In this case, MPD and JPD cannot be updated. Hence, to avoid the partial stagnation of DPLS, we do not use the solutions in \(ExA_t \) to update MPD. Note that MPD is not updated by using the best solution in \(ExA_t \), because we found in our preliminary experiments that such a way is very likely to lead undesirable convergence of MPD. In addition, LPD is updated based on the differences of \(S_{t-1} \) and \(\hat{S}_t \) (Line 16). Indeed, one can regard LPD as a “quasi-direction” of promising solutions in the current search region. Hence, LPD can capture more detailed information about the search regions that are being exploited, which is used to precisely guide GNS. Afterwards, GNS is used to discover high-quality local optima with the given region (Line 11), which is beneficial to reduce the sampling errors in producing \(A_t \) and \(B_t \) as well. In view of the general framework of DPLS, it highlights the integration of learning methods associated with the global and local levels and is this different from the PLS algorithms of [23], [24].

![Fig. 2. Flowchart of proposed DPLS for TAP.](image_url)
B. Dual Probability Learning

1) Global level learning: The purpose of the global level learning is to accumulate probability information of high-quality solutions found so far, so as to predict promising search regions. However, the learning goals for MPD and JPD are different, since they account for different solution features of TAP. We update \(mpro \) as follows:

\[
mpro_{t,i,j} = \begin{cases}
\text{mpro}_{t-1,i,j} + LR, & \text{if } J = \hat{S}_t,i, \quad i \in M, \\
\text{mpro}_{t-1,i,j}, & \text{otherwise}
\end{cases}
\]

where \(LR \) is the learning rate. One observes that \(mpro_{t-1} \) and \(mpro_t \) \((t \geq 2)\) are connected with \(LR \) and the differences between them are uniquely determined by \(\hat{S}_t \). Arguably, a larger value of \(LR \) results in stronger learning ability and faster convergence of \(mpro_t \), while a smaller \(LR \) value leads to relatively weaker learning ability.

Note that \(mpro_{t,i,j} \) tends to become large if task \(i \) is frequently assigned to agent \(j \) regarding \(S_t \) at each generation. Thus, \(mpro_t \) is suitable to determine “which task should go to which agent”. Thereafter, we normalize \(mpro_t \) as follows:

\[
mpro_{t,i,j} = \frac{mpro_{t,i,j}/(1 + LR)}{\sum_{i,j} mpro_{t,i,j}/(1 + LR)}, \quad \forall i \in \mathbb{N}, j \in \mathbb{M}. \tag{7}
\]

On the other hand, the global level learning also concerns the grouping preference about “which tasks should stay together”, which is represented by \(cpro_t \) and updated by high-quality solutions in \(ExA_t \). Unlike \(mpro_t \), the elements of \(cpro_t \) are the probability values of any pair of tasks that are assigned to the same agent. The learning method of \(cpro_t \) is given in Algorithm 2.

Algorithm 2 Learning Method of \(cpro_t \) (Global Level)

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input: (ExA_t)</td>
</tr>
<tr>
<td>2</td>
<td>Output: (cpro_t)</td>
</tr>
<tr>
<td>3</td>
<td>Set (tmpAs := t), if (t < As); otherwise, set (tmpAs := As); //current size of (ExA_t)</td>
</tr>
<tr>
<td>4</td>
<td>Set (cpro_{t,i,k} := 1/2 \cdot (N^2 - N), \forall i \neq k \in \mathbb{N}); //initialization</td>
</tr>
<tr>
<td>5</td>
<td>#frequency of each pair of tasks that stay together*</td>
</tr>
<tr>
<td>6</td>
<td>Set (tmpCa := 0);</td>
</tr>
<tr>
<td>7</td>
<td>For (s := 1) to (tmpAs) do</td>
</tr>
<tr>
<td>8</td>
<td>For each pair ((i,k) \in { (i',k')</td>
</tr>
<tr>
<td>9</td>
<td>If (ExA_{t,s,i} = ExA_{t,s,k}) then</td>
</tr>
<tr>
<td>10</td>
<td>Set (cpro_{t,i,k} := cpro_{t,i,k} + 1); //update the probability</td>
</tr>
<tr>
<td>11</td>
<td>Set (tmpCa := tmpCa + 1); //number of pairwise tasks that stay together</td>
</tr>
<tr>
<td>12</td>
<td>End If</td>
</tr>
<tr>
<td>13</td>
<td>End For</td>
</tr>
<tr>
<td>14</td>
<td>End For</td>
</tr>
<tr>
<td>15</td>
<td>#normalization of probability value*</td>
</tr>
<tr>
<td>16</td>
<td>Set (scaleVal := 1 + tmpCa); //scaling factor for normalization</td>
</tr>
<tr>
<td>17</td>
<td>For each pair ((i,k) \in { (i',k')</td>
</tr>
<tr>
<td>18</td>
<td>Set (cpro_{t,i,k} := cpro_{t,i,k}/scaleVal); //normalization</td>
</tr>
<tr>
<td>19</td>
<td>Set (cpro_{t,k,i} := cpro_{t,k,i}/scaleVal); //symmetric feature of probability</td>
</tr>
<tr>
<td>20</td>
<td>End For</td>
</tr>
<tr>
<td>21</td>
<td>Return: (cpro_t)</td>
</tr>
</tbody>
</table>

In Algorithm 2, we first initialize \(cpro_t \) with equal probability (Line 4). The elements of \(cpro_t \) are then approximated by the frequencies extracted from solutions in \(ExA_t \), which is a maximum likelihood estimation. It is thus reliable to use Algorithm 2 for capturing the grouping preferences of tasks. Note that the elements of \(cpro_t \) to be learnt are only located in the upper triangular part excluding the diagonal ones, which is beneficial to the efficiency of the learning method (Line 19).

2) Local level learning: The purpose of the local level learning is to discover detailed information about the current search regions. Here, we adopt the learning method in [23], [24] proposed for the graph coloring problem. Its original idea comes from reinforcement learning, consisting of reward, penalization and compensation operators. Let \(\alpha, \beta \) and \(\gamma \) be the reward factor, penalization factor and compensation factor. The learning method of \(lpro_t \) is given in Algorithm 3.

Algorithm 3 Learning Method of \(lpro_t \) (Local Level)

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input: (S_{t-1}, \hat{S}_t)</td>
</tr>
<tr>
<td>2</td>
<td>Output: (lpro_t)</td>
</tr>
<tr>
<td>3</td>
<td>For (i := 1) to (N) do</td>
</tr>
<tr>
<td>4</td>
<td>If (S_{t-1,i} = \hat{S}_t,i) then</td>
</tr>
<tr>
<td>5</td>
<td>Set (lpro_{t,S_{t-1,i},i} := \alpha + (1 - \alpha) \cdot lpro_{t,S_{t-1},i}; //\text{rewards}</td>
</tr>
<tr>
<td>6</td>
<td>Else</td>
</tr>
<tr>
<td>7</td>
<td>Set (lpro_{t,S_{t-1,i},i} := (1 - \gamma) \cdot (1 - \beta) \cdot lpro_{t,S_{t-1},i}; //\text{penalization}</td>
</tr>
<tr>
<td>8</td>
<td>Set (lpro_{t,S_{t-1},i} := \gamma + (1 - \gamma) \cdot \frac{\beta}{\pi^2} + (1 - \gamma) \cdot (1 - \beta) \cdot lpro_{t,S_{t-1},i}; //\text{compensation}</td>
</tr>
<tr>
<td>9</td>
<td>End If</td>
</tr>
<tr>
<td>10</td>
<td>For (j := 1) to (M) do</td>
</tr>
<tr>
<td>11</td>
<td>If (S_{t-1,j} = \hat{S}_t,j) and (\hat{S}_t,j = j) then</td>
</tr>
<tr>
<td>12</td>
<td>Set (lpro_{t,j,j} := (1 - \gamma) \cdot \frac{\beta}{\pi^2} + (1 - \gamma) \cdot (1 - \beta) \cdot lpro_{t,j,j}; //\text{normalization}</td>
</tr>
<tr>
<td>13</td>
<td>End For</td>
</tr>
<tr>
<td>14</td>
<td>End For</td>
</tr>
<tr>
<td>15</td>
<td>End For</td>
</tr>
<tr>
<td>16</td>
<td>Return: (lpro_t)</td>
</tr>
</tbody>
</table>

From Algorithm 3, we can see that \(lpro_t \) is constructed based on the differences between \(S_{t-1} \) and \(\hat{S}_t \). After executing the reward (Line 5), the penalization (Line 7), the compensation (Line 8) and the normalization (Line 11) operators, the final \(lpro_t \) can be obtained. Accordingly, \(lpro_t \) can be useful to predict promising areas that may contain high-quality local optima in the current search region.

C. Sampling Method for New Solutions

At each generation of DPLS, new solutions \(A_t \) and \(B_t \) are generated by sampling the probability distributions learnt in the dual probability learning. To be specific, \(A_t \) is sampled from the combination of \(mpro_t \) and \(cpro_t \), while \(B_t \) is sampled from \(lpro_t \). From the search model of DPLS (Fig. 2), one can see that \(A_t \) and \(B_t \) are generated from two independent learning components of DPLS. They thus contribute differently to the overall search behavior of DPLS. Meanwhile, the used probability distributions \(mpro_t, cpro_t \) and \(lpro_t \) are concerned with different considerations. Therefore, we will adopt different sampling methods for \(A_t \) and \(B_t \).

1) Proposed sampling method for \(A_t \): A hybrid sampling method is proposed to generate \(A_t \), which not only depends on \(mpro_t \) and \(cpro_t \) but also a random noise. Let \(noise \) be the random noise, and \(rv = [rv_1, ..., rv_{M+1}] \) the roulette vector for a given task. The proposed sampling method for \(A_t \) is given in Algorithm 4.

In Algorithm 4, the sampling manner for each task is determined by \(noise \) (Line 7). Such a method can make good
use of the randomness and so enhances the diversification of the algorithm. If the noise condition is not satisfied, the sampling process is executed based on the integration of \(\textit{mpro}_t\) and \(\textit{cpro}_t\) (Lines 11 to 29). That is, we first sample the \(i\)th task using the roulette vector (Lines 11 to 21). Then, if there are still tasks needed to be sampled, we select a task \(nL\) having the largest probability for staying together with task \(i\) and assign \(nL\) to agent \(A_i\) (Lines 22 to 29). By doing so, \(A_i\) can maintain a good tracking performance for the information from both \(\textit{mpro}_t\) and \(\textit{cpro}_t\), so as to enhance the intensification of the algorithm.

Algorithm 4 Proposed Sampling Method for \(A_i\)

1. **Input:** \(\textit{mpro}_t\) and \(\textit{cpro}_t\)
2. **Output:** \(A_i\)
3. Set \(\text{flagTask}_i := \text{false}, i \in \mathbb{N}\);/flags of already assigned tasks
4. Set \(nTask := 0\);/total number of already assigned tasks
5. For \(i := 1\) to \(N\) do
6. If \(\text{flagTask}_i := \text{false} then
7. If \(\text{random}[0,1] < \text{noise} then
8. Set \(A_i := \text{random}[1, ..., M]\), \(\text{flagTask}_i := \text{true};\)
9. Set \(nTask := nTask + 1;\)
10. Else
11. Set \(rv_i := 0\) and \(rv_{i+1} := 1;\)//construct roulette vector
12. For \(j := 2\) to \(M\) do
13. Set \(rv_j := rv_{j-1} + \textit{mpro}_j, i, j;\)
14. End For
15. Set \(\text{rnd} := \text{random}(0, 1);\)
16. For \(j := 1\) to \(M\) do
17. If \(\text{rnd} \geq rv_{j, \text{rnd}} < rv_{j+1, \text{rnd}} then
18. Set \(A_i := j\) and \(\text{flagTask}_i := \text{true};\)
19. Set \(nTask := nTask + 1;\) Break;
20. End If
21. End For
22. If \(nTask < N\) then
23. Set \(T := \{i|\text{flagTask}_i = \text{false}, i \in \mathbb{N}\};\)//tasks need to be assigned
24. For each task \(n \in T\) with \(\textit{cpro}_{n,i} \neq 0\) do
25. Select a task \(nL\) from \(T\) that satisfies \(\textit{cpro}_{nL,i} > \textit{cpro}_{n,i}, n \in T\); \(\{nL\};\)
26. Set \(A_{i,nL} := A_i\) and \(\text{flagTask}_{nL} := \text{true};\)
27. Set \(nTask := nTask + 1;\)
28. End For
29. End If
30. End If
31. End If
32. End For
33. Return: \(A_i\).

2) **Sampling method for \(B_i\):** The sampling method proposed in [23], [24] is adopted to generate \(B_i\), and the sampling manner for each task is determined by a random noise as well. The sampling process for \(B_i\) works as follows. For each task \(i \in \mathbb{N}\), the noise condition is first checked (the same as Line 7 in Algorithm 4). And then we set \(B_{t,i} := \text{random}[1, ..., M]\) if the random value \(\text{random}[0, 1]\) is smaller than \(\text{noise}\). Otherwise, we select an agent \(mL \in \mathbb{M}\) satisfying \(\textit{lpro}_t, mL_i > \textit{mpro}_t, m;\), \(m \in \mathbb{M}\{'mL\};\) and set \(B_{t,i} := mL\). As shown in Algorithm 1, selecting a solution from \(\{A_i, B_i\}\) to determine \(S_t\) is in fact a complementing strategy for the two kinds of probability distributions of DPLS. That is, the random noises adopted in both sampling methods for \(A_i\) and \(B_i\) are consistent with each other. Thus, we use the same value of \(\text{noise}\) as in Algorithm 4.

D. Probability Smoothing Method for \(\textit{mpro}_t\) and \(\textit{lpro}_t\)

It is very likely that the probability distributions gradually converge to stable states (i.e., some probability values are close to 0 or 1) along with the iteration of DPLS. Such a convergence may lead to undesirable local optima especially in some flat search regions. We found in our preliminary observations that \(\textit{cpro}_t\) does not have a tendency to converge to 0 or 1. Since the learning methods of \(\textit{mpro}_t\) and \(\textit{lpro}_t\) depend on \(S_t\) that may speed up the convergence, it is necessary to execute smoothing operators for them. Due to the same features of \(\textit{mpro}_t\) and \(\textit{lpro}_t\), we adopt the smoothing procedure [23], [24] and parameters for them.

Let \(\text{thre}\) be the threshold of the smoothing operator and \(\rho\) the smoothing factor. Take \(\textit{mpro}_t\) for example, the smoothing works as follows. For each task \(i \in \mathbb{N}\), we check the probability of \(\textit{mpro}_t, j, i\) for each agent \(j \in \mathbb{M}\). If \(\textit{mpro}_t, j, i \geq \text{thre}\), we record the probability \(\text{rec} = \textit{mpro}_t, j, i\) and set \(\textit{mpro}_t, j, i = \rho \cdot \textit{mpro}_t, j, i\). Then, we normalize the probability values for \(l \in \mathbb{M}\) as \(\textit{mpro}_t, j, i = \textit{mpro}_t, j, i/(1 - (1 - \rho) \cdot \text{rec})\). The above procedure continues until the probability values \(\textit{mpro}_t, j, i (j \in \mathbb{M})\) of the \(i\)th task are all less than \(\text{thre}\). The smoothing operator allows the algorithm to forget some old memories of probability distributions and thus enhances the diversification of DPLS.

E. Proposed Gain-based Neighborhood Search (GNS)

In this work, we reformulate TAP in a penalty function form without Constraints (3) and (4) as follows:

\[
\min \ h = \{f_{te} + f_{ce}\} \
\text{subject to Constraints (2) and (5),}
\]

where \(f_{te}\) is the total cost (i.e., the objective function in (1)), and \(f_{ce}\) is the penalty term of constraint violations defined as

\[
f_{ce} = \sum_{j \in \mathbb{M}} \left\{ \left[\sum_{i \in \mathbb{N}} p_i x_{ij} - P_j, 0 \right] \right\}^2
\quad + \sum_{j \in \mathbb{M}} \left\{ \left[\sum_{i \in \mathbb{N}} q_i x_{ij} - Q_j, 0 \right] \right\}^2
\]

If \(f_{ce} > 0\), the solution does not satisfy Constraints (3) or (4) and thus is infeasible. In this case, \(h = f_{te} + f_{ce}\) is used to assess the solution quality. That is, we always use the solutions with better values of \(h\) to perform the components of DPLS, regardless of their feasibility. This is also the basic idea of penalty function strategy for handling the constraints of metaheuristics [11]. However, it is often difficult to select a suitable penalty weight, which is strongly sensitive to the problem instances as well as the solution methods. For these reasons, the square function in Eq. (9) is adopted to cope with this difficulty.

Given that we adopt a penalty weight \(\lambda\) and build another penalty term \(f_{ce}^\prime\), the related conclusion is as follows:

\[
\lim_{f_{ce}^\prime \to \lambda^2} \left\{ f_{ce} - f_{ce}^\prime \right\} = \lim_{f_{ce} \to \lambda^2} \left\{ \lambda \cdot \sqrt{f_{ce} - f_{ce}} \right\} = 0
\]

where \(f_{ce}^\prime = f_{ce}\) at point \((\lambda^2, \lambda^2)\). In addition, \(f_{ce}^\prime > f_{ce}\) if \(f_{ce} < \lambda^2\) while \(f_{ce}^\prime < f_{ce}\) if \(f_{ce} > \lambda^2\). Therefore, the square penalty term in Eq. (9) is reasonable to address the constraints of TAP. It would be worthwhile to design other effective constraint handling methods for TAP in future research.
Based on the above reformulation, to discover high-quality local optima, we propose a GNS-based local optimization method which is based on two kinds of gains regarding the cost and the constraint violation. We use the gain calculation method proposed in [2] with the notable difference that our method is based on the notion of Pareto dominance. Specifically, in GNS, we treat two kinds of gains as conflicting goals when constructing the neighborhood. This is because, in TAP, smaller assignment or communication cost for tasks does not mean smaller processing or memory requirements. Besides, two kinds of gains are in nature suitable to be regarded as conflicting ones. Note that the proposed Pareto-dominance GNS aims at exploiting high-quality local optima and thus does not concern the diversity metrics of conventional multi-objective optimization solution methods [12]. In Section IV, we will put forward relevant assessments on the effectiveness of the presented Pareto-dominance GNS, comparing DPLS with its variant that uses another GNS based on the linear sum of the two gains.

Let $\alpha_i \ (j \in \mathbb{M})$ be the set of tasks assigned to agent j. Then, the gain of the cost associated with moving task $i \in \alpha_j$ from agent j to agent $l \in \mathbb{M}\setminus\{j\}$ is defined as follows:

$$g_{i,j,l}^{c} = \sum_{k \in \alpha_j} e_{ik'} - \sum_{k \in \alpha_j \setminus \{i\}} e_{ik} + c_{ij} - c_{il},$$

where we set $e_{ik'} = 0$ if $\alpha_i = \emptyset$ and $e_{ik} = 0$ if $\alpha_j \setminus \{i\} = \emptyset$. The moving operator of tasks in GNS is illustrated in Fig. 3.

Fig. 3. Illustration of moving operator (moving task i from agents j to l).

The gain of the constraint violation $g_{i,j,l}^{cv}$ with regard to moving task i from agent j to l can be calculated according to Eqs. (12) to (16) [2]. It is composed of 8 sub gains (Eq. (12)) representing different scenarios of the constraint violations of agents j and l. Here, we combine the definitions of these sub gains regarding the processing capacity and the memory capacity due to the same principle.

$$g_{i,j,l}^{cv} = g_{i,j,l}^{cva} + g_{i,j,l}^{cvb} + g_{i,j,l}^{cvd} + g_{i,j,l}^{cvf} + g_{i,j,l}^{cvh} + g_{i,j,l}^{cvk} + g_{i,j,l}^{cvl},$$

where

$$g_{i,j,l}^{cva} = \left(\sum_{i' \in \alpha_i} p(q)_{i'} - P(Q)_j \right)^2,$$

$$- \left(\sum_{i' \in \alpha_j \setminus \{i\}} p(q)_{i'} - P(Q)_j \right)^2,$$

if $\sum_{i' \in \alpha_j \setminus \{i\}} p(q)_{i'} > P(Q)_j$, otherwise 0,

For memory constraints, we illustrate the sub gains of Eqs. (13) to (16) in Fig. 4. The first two figures show the conditions for Eqs. (13) and (14), while the last two the conditions for Eqs. (15) and (16). Note that for calculating $g_{i,j,l}^{cvh}$ we only consider $g_{i,j,l}^{cvh}$ to $g_{i,j,l}^{cvh}$ and the others $g_{i,j,l}^{cvh}$ to $g_{i,j,l}^{cvh}$, ($i' \neq i, j' \neq j$ and $l' \neq l$) are not changed. This is beneficial to the efficiency of GNS.

The proposed GNS procedure is shown in Algorithm 5. Two kinds of gains and nondominated set \mathbb{P} are initialized first (Lines 5 to 6). We build \mathbb{P} based on the values of the two gains to be maximized where at least one gain is larger than 0. Then, whenever $\mathbb{P} \neq \emptyset$ (Line 8), the main loop of GNS is repeated until $\mathbb{P} = \emptyset$ (Lines 9 to 25). For each loop of GNS, a vector (i, j, l) is determined based on the proposed Rules 1 to 3 (Lines 14 to 16). Since, the two gains are seen as conflicting goals in Rules 1 to 3, and the moving operator is executed to update \mathbf{S}_{t-1} (Line 17). Next, \mathbf{S}_{t-1} is evaluated (Line 19). It is very likely that $g_{i,j,l}^{cvh} + g_{i,j,l}^{cvh} \leq 0$ for each loop, so we always check the relationship between $h(S_{t-1})$ and $h(S_t)$ before updating S_t (Lines 20 to 22). In view of the above procedures, the existing GNS method of [2], which is based on the linear sum of the two gains, can be seen as a special case of our Pareto-dominance GNS.
Algorithm 5 Proposed Pareto-dominance-based GNS

1: Input: S_{t-1}
2: Output: \hat{S}_t
3: /*initialization*/
4: Set $\hat{S}_t := S_{t-1}$ and $h(\hat{S}_t) := h(S_{t-1})$;
5: Calculate $g(i,j,l)$ and $g'(i,j,l)$, $i \in N$, $j = S_{t-1}$, and $l \in M\{j\}$;
6: Construct nondominated set P based on $N \times (M-1)$ pairs of gains $(g(i,j,l), g'(i,j,l))$ such that $(g(i,j,l) > 0) \lor (g'(i,j,l) > 0)$, $i \in N$, $j = S_{t-1}$, and $l \in M\{j\}$;
7: /*neighborhood search*/
8: If $P \neq \emptyset$ then
9: Repeat
10: If $|P| = 1$ then
11: Perform moving operator for (i,j,l) and update S_{t-1};
12: Else
13: Determine a vector (i,j,l) based on following rules:
14: Rule 1: If there exist one or more pairs of gains in P satisfying $(g(i,j,l) > 0)$, select (i,j,l) from such pairs with the largest $g(i,j,l)$;
15: Rule 2: If conditions in Rule 1 are not satisfied, and there exist one or more pairs of gains in P satisfying $(g'(i,j,l) < 0)$, select (i,j,l) from such pairs with the largest $g'(i,j,l)$;
16: Rule 3: If conditions in Rules 1 and 2 are not satisfied, and there exist one or more pairs of gains in P satisfying $(g'(i,j,l) > 0)$, select (i,j,l) from such pairs with the largest $g'(i,j,l)$;
17: Perform moving operator for (i,j,l) and update S_{t-1};
18: End If
19: Update objective $h(S_{t-1}) := h(S_{t-1}) - (g(i,j,l) + g'(i,j,l));$
20: If $h(S_{t-1}) < h(\hat{S}_t)$ then
21: Set $\hat{S}_t := S_{t-1}$ and $h(\hat{S}_t) := h(S_{t-1})$; //update \hat{S}_t
22: End If
23: Calculate $g(i,j,l)$ and $g'(i,j,l)$, $i \in N$, $j = S_{t-1}$, and $l \in M\{j\}$; //Eqs. (11) to (16)
24: Construct set P; //use the same method in Line 6
25: Until ($P = \emptyset$)
26: Return: \hat{S}_t

F. Constraint Handling Method for Infeasible Solutions

A problem-specific repair operator for infeasible solutions is proposed, which will be invoked if and only if no feasible solution can be found at the end of the search process of DPLS. In this case, during the search process of DPLS, the solution quality is evaluated based on the newly introduced objective function in Eq. (8). That is, we do not remove infeasible solutions when updating probability distributions in the dual probability learning stage. Hence, the search process of DPLS may start from the infeasible side of the search space of TAP. The proposed repair operator is given in Algorithm 6.

As Algorithm 6 shows, the repair operator is an iterative procedure (Lines 9 to 23), starting from the initialization of the spare capacity of each agent (Line 8). The primary idea is to balance the spare capacity of each agent, so as to transform an infeasible solution in ExA_{Max} into a feasible solution. We only consider infeasible agents (i.e., the spare capacities are less than 0, Line 11) and move the related task to the agent having the largest spare capacity (Line 15). The spare capacity of each agent and the total number of infeasible agents are dynamically updated (Lines 17 and 22). We repeat these operators until a feasible solution is produced.

Algorithm 6 Repair Operator for Infeasible Solutions

1: Input: ExA_{Max}
2: Output: g_{Best}
3: For $s := 1$ to As do
4: Set $SC_j := 0$ for each $j \in M$; //initial spare capacities
5: For $i := 1$ to N do
6: Set $j = ExA_{\text{Max}}_{s,i}$ and $SC_j := SC_j + p_i + q_i$;
7: End For
8: Set $SC_j := P_j + Q_j - SC_j$ for each $j \in M$; //spare capacities
9: Repeat
10: For $j := 1$ to M do
11: If $SC_j < 0$ then
12: Set $CT := \{i|ExA_{\text{Max}}_{s,i} = j, i \in N\}$;
13: Rank solutions in CT according to the value of $p_i + q_i$ ($ii \in CT$);
14: For $ii := 1$ to $|CT|$ do
15: Find an agent jj from M that has the largest spare capacity;
16: Set $ExA_{\text{Max}}_{s,i} := jj$; //move task ii to jj
17: Set $SC_j := SC_j + p_i + q_i$ and $SC_{jj} := SC_j - p_i - q_i$; //If $SC_j \geq 0$ then Break;
18: End For
19: End If
20: End For
21: Set $nif := |\{j|SC_j < 0, j \in M\}|$; //#infeasible agents
22: Until ($nif = 0$)
23: Compute the objective function for solution ExA_{Max};
24: End For
25: Find π with the smallest objective function from ExA_{Max};
26: Set $g_{\text{Best}} := \pi$;
27: Return: g_{Best}

IV. NUMERICAL RESULTS AND COMPARISONS

A. Test Instances and Experimental Design

To assess the effectiveness of the proposed DPLS, we generate 180 benchmark instances of TAP based on the work of Kaya and Uçar [30]. In their work, the relationships among tasks was described using an undirected task interaction graph (TIG) $G = (N,E)$ where a node of N represents a task and E is the set of edges representing the communication between each pair of task. Meanwhile, an expected time to compute matrix $ETC = [e_{ij}]_{N \times N}$, whose elements are the assignment cost, was also introduced. If a pair of tasks are not contained in E, the communication cost between them is always 0 even they stay in different agents. Hence, TIG and ETC determine the solving difficulty of the instances of TAP. As suggested in [30], an inconsistent ETC matrix is better than a consistent matrix due to the heterogeneous features of tasks. In fact, the consistent ETC matrix is a special case of the inconsistent one. The inconsistent ETC matrix can provide more general solution features of TAP, which is helpful in showing the synthetical performance of TAP algorithms studied. Thus, to generate the test instances, we use an inconsistent ETC matrix which consists of 4 types, i.e., $ETC = \{0, 1, 2, 3\}$. Moreover, a communication-to-computation ratio r_{com} is introduced to determine the different impacts of the communication cost and the assignment cost on the objective function of TAP. More details about the above definitions and the generation methods of $e_{i,k}$ and $c_{i,j}$ can be found in [30].

Nevertheless, different from the approach proposed in [30], the processing capacity and the memory capacity of agents
B. Parameter Analysis and Settings

The parameters of DPLS are: the reward factor α, the penalization factor β, the compensation factor γ, the smoothing factor ρ, the sampling noise noise, the smoothing threshold thre, the learning rate LR and the size of the external archive As. To find an appropriate combination of parameters, we conduct the design of experiment (DOE), in which the orthogonal array $L_{49}(5^8)$ with 49 combinations of levels is used. The first necessity of DOE is to determine the factor levels based on the ranges of parameters. It is not uncommon, however, that certain extreme values in the ranges of parameters may cause sharp deterioration of the performance of DPLS. In this sense, we find two extreme values for each parameter which are used as the boundary values of factor levels. Note that the determinations of such boundary values are based on preliminary observations on a number of instances with different sizes. Thereafter, the factor levels can be generated by using an arithmetic progression. Take LR for example, we first identify the extreme values of LR with 0 and 0.3, and then give its factor levels: 0.05, 0.10, 0.15, 0.20 and 0.25. The

levels of all parameters (factors) of DPLS are given in Table I. Using a medium-sized instance t162p4r1.0ETC2, for each parameter combination, we independently run DPLS 21 times with the stopping condition $t_{Max} = 5000$ and use the values of AV as response values4. The level trends of parameters are given in Fig. 5. Moreover, we carry out the analysis of variance (ANOVA) at the 95% CI, as shown in Table II. As it shows, the p-values for all the parameters are larger than 0.05, indicating that DPLS is relatively less sensitive to its parameters and in turn can retain better robustness for solving different kinds of TAP instances.

![Fig. 5. Level trend of each parameter (using AV as response values).](image-url)

Note that the selections of parameters should balance the effectiveness and the efficiency of DPLS. In particular, we observe the level trends of parameters that use average CPU time as response values4. For example, in Fig. 5, the levels of β display a better value of margin mean corresponding to the level 5, while the related level trend of CPU time shows a relatively small difference between levels 1 and 5. Thus, the selection of β can be 0.25. Based on the above guidelines, we give the selections of parameters in Table II. We

4Details of the orthogonal array and the corresponding response values are available at: http://dx.doi.org/10.13140/RG.2.2.17462.45124.

5Level trends of parameters concerned with CPU time are available at: http://dx.doi.org/10.13140/RG.2.2.35182.64322.
also perform relevant experiments for the parameter settings of DPLS considering small-sized t59p6r1.4e1 and large-sized t310p4r1.0e0 and are able to confirm these settings.

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA RESULTS AND PARAMETER SELECTIONS</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>α</td>
</tr>
<tr>
<td>β</td>
</tr>
<tr>
<td>γ</td>
</tr>
<tr>
<td>ρ</td>
</tr>
<tr>
<td>noise</td>
</tr>
<tr>
<td>thr<e></td>
</tr>
<tr>
<td>LR</td>
</tr>
<tr>
<td>As</td>
</tr>
</tbody>
</table>

C. Comparisons of DPLS and State-of-the-art Algorithms

In this section, we compare DPLS with three state-of-the-art reference algorithms, i.e., IDE [4], HBMO [2] and NGHS [3]. To be fair, we first run DPLS for each instance ($M_{ax} = 5000$) and record the CPU time, and then the three algorithms are run with the same CPU time6. In terms of BV, AV and SD, the values of $\#Best$ for algorithm pairs “DPLS vs. IDE”, “DPLS vs. NGHS” and “DPLS vs. HBMO” are summarized in Fig. 6. In addition, the significance of the difference between DPLS and the three algorithms is given in Table III.

<Fig. 6. Summary of results of IDE, NGHS, HBMO and DPLS (180 instances).>

From Table III and Fig. 6, we can see that DPLS outperforms the other three algorithms in terms of BV, AV and SD. The corresponding p-values are all less than 0.05, except that the BV of “DPLS vs. HBMO” is 0.089. One can also find that DPLS and HBMO have the same value of $\#Best$ with regard to BV. Therefore, it is necessary to further discuss the competitiveness of DPLS and HBMO. Particularly, we calculate two Gap (%) values to the best known solution (BKS)7: the best relative error (BRE) and the average relative error (ARE) as follows:

$$BRE = ((BV - BKS)/BKS) \times 100\%,$$

$$ARE = ((AV - BKS)/BKS) \times 100\%.$$

In terms of BRE and ARE, we give violin plots for HBMO and DPLS in Fig. 7. Note that these violin plots correspond only to the instances with $M = 6$ and 8. This is because, for all the instances with $M = 4$, DPLS achieves a more competitive performance than the other compared algorithms. From Fig. 7, one observes that the statistic distributions of DPLS are better than HBMO. Apparently, DPLS has better median lines and more reasonable dispersions than those of HBMO, indicating that DPLS can obtain more robust solutions than HBMO.

<Fig. 7. Violin plots for solutions of HBMO and DPLS ($M = 6$ and 8).>

To demonstrate the stability of DPLS, for each combination of N, M, and r_{com}, we consider the average value of SD (i.e., SD_{avg}) of each algorithm with regard to $ETC = 0, 1, 2$ and 3. Thus, there are a total of 45 groups of SD_{avg} values (i.e., t59p4r0.7 to t310p4r1.4) for each algorithm. We here only consider IDE, HBMO and DPLS, because DPLS obviously outperforms NGHS associated with BV, AV and SD (see Fig. 6). The trend of SD_{avg} is given in Fig. 8. As Fig. 8 shows, DPLS obtains smaller SD_{avg} values than HBMO (37 out of 45 groups) and IDE (43 out of 45 groups). These results verify the competitive stability of DPLS for solving TAP.

<Fig. 8. Trends of SD_{avg} for IDE, HBMO and DPLS (45 groups).>

See more details about the BKS of TAP instances in Section IV-D.

6Details of comparison results associated with 180 individual instances are available at: http://dx.doi.org/10.13140/RG.2.2.10496.87047.

7See more details about the BKS of TAP instances in Section IV-D.
To observe the statistic distributions of the solutions of DPLS and the three compared algorithms, we draw the box plots for instances t66p61.0e1, t162p61.0e1, t245p61.0e1 and t310p61.0e1 in Fig. 9. Meanwhile, we give the related 95\% CI’s of these algorithms in Fig. 10. It can be clearly found from Figs. 9 and 10 that DPLS has a more reasonable distribution than the other compared algorithms, regarding t66p61.0e1, t245p61.0e1 and t310p61.0e1. However, the median line of DPLS is similar to that of HBMO with respect to t162p61.0e1. Thereby, the Q-Q plots which reveal the detailed information about the solution distributions of HBMO and DPLS are given in Fig. 11. As shown in Fig. 11, DPLS achieves a good match between the observed values (objective functions) and the relevant expected values, which is better than HBMO. In view of the above observations, DPLS can obtain better statistic distributions of solutions than the compared algorithms.

Moreover, we give the trends of $T_{avg}(s)$ for each instance in Fig. 12. We can see from Fig. 12 that the values of $T_{avg}(s)$ increase along with the enlargement of the problem size. However, the values of $T_{avg}(s)$ ranged from 5s to 250s for instances with $N = 59, 66$ and 162, while 200s to 1300s for instances with $N = 245$ and 310. Thus, the values of $T_{avg}(s)$ are acceptable and in turn reveal the efficiency of DPLS. Due to the effectiveness and efficiency, it would be highly desirable to use DPLS for addressing relevant real-life applications that can be modeled as TAP.

D. Additional Assessments of DPLS

We provide additional assessments of DPLS concerning the following issues: 1) number of BKS obtained by DPLS, 2) effectiveness of DPLS for difficult instances, and 3) effectiveness of DPLS’s components. Thereby, we can verify the overall performance of DPLS and the contributions of the main components of DPLS.

1) Number of BKS obtained by DPLS: Since no previous results are available for the 180 benchmark instances, we report the values of BKS as a useful supplement. For each instance, we solve the mathematical model of TAP (Section I) using the CPLEX solver. BKS for each instance is reported...
as the optimal solution if it is solved by CPLEX. Otherwise, the values of BKS are reported as the best objective functions found by IDE, HBMO, NGHS or DPLS. The stopping condition of CPLEX is the determined running time of 2.5 hours\(^3\). Among all 180 benchmark instances, the numbers of BKS as well as optimal solutions (denoted as OPT) that can be found by IDE, HBMO, NGHS and DPLS are given in Fig. 13. One can clearly see that DPLS finds 97 instances among all 180 instances that can be reported as BKS, wherein 80 of them are optimal solutions, which are much better than IDE, HBMO and NGHS.

Moreover, we observe that CPLEX can obtain 134 optimal solutions out of 180 instances. Note that for the other 46 large-sized instances CPLEX stops with the error message "out of memory". This fact shows that CPLEX is limited to small or medium instances and for large instances metaheuristics like DPLS are a useful alternative. For the 134 instances with known optima, DPLS attains 80 optimal solutions, with computation times \(T_{\text{avg}}(s)\) which are significantly shorter than CPLEX (see Fig. 12). Furthermore, for the other 54 instances\(^4\) for which DPLS fails to attain optimal solutions, we calculate BRE and ARE. The trends of the values of BRE and ARE of DPLS are given in Fig. 14. It is clear that the gaps to the optima for most of these 54 instances are relatively small: less than 1% for BRE and less than 3% for ARE. On the basis of the above analysis, DPLS has a large potential to find high-quality solutions of TAP.

As Fig. 15 and Table IV show, DPLS performs better than the reference algorithms with regard to ARE and SD. The values of \#Best of DPLS for ARE and SD are 29 and 28 which are larger than those of the compared algorithms. For BRE, HBMO has a slightly better value of \#Best. However, the related \(p\)-value is 0.763 (> 0.05), which means that there is no significant difference between HBMO and DPLS regarding BRE. Thereby, we conduct further discussions on the performance of HBMO and DPLS for the difficult instances. In particular, the 46 instances are divided into 3 groups including "\(N \leq 162\)”, “\(N = 245\)" and “\(N = 310\)". In terms of BRE and ARE, the violin plots for these groups of solutions of HBMO and DPLS are given in Fig. 16.

\(\text{TABLE IV} \quad \text{SIGNIFICANCE OF DIFFERENCE FOR DIFFICULT INSTANCES}\)

<table>
<thead>
<tr>
<th>Algorithm pair</th>
<th>BRE</th>
<th>Significance</th>
<th>ARE</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPLS vs. IDE</td>
<td>0.000</td>
<td>Yes</td>
<td>0.000</td>
<td>Yes</td>
</tr>
<tr>
<td>DPLS vs. NGHS</td>
<td>0.000</td>
<td>Yes</td>
<td>0.000</td>
<td>Yes</td>
</tr>
<tr>
<td>DPLS vs. HBMO</td>
<td>0.763</td>
<td>No</td>
<td>0.039</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\(\text{As Fig. 15 and Table IV show, DPLS performs better than the reference algorithms with regard to ARE and SD. The values of \#Best of DPLS for ARE and SD are 29 and 28 which are larger than those of the compared algorithms. For BRE, HBMO has a slightly better value of \#Best. However, the related \(p\)-value is 0.763 (> 0.05), which means that there is no significant difference between HBMO and DPLS regarding BRE. Thereby, we conduct further discussions on the performance of HBMO and DPLS for the difficult instances. In particular, the 46 instances are divided into 3 groups including “\(N \leq 162\)”, “\(N = 245\)" and “\(N = 310\)”. In terms of BRE and ARE, the violin plots for these groups of solutions of HBMO and DPLS are given in Fig. 16.}\)

\(\text{Fig. 16. Violin plots for solutions of HBMO and DPLS (difficult instances).}\)

\(\text{From Fig. 16, we find that DPLS obtains better values of BRE and ARE than HBMO, concerned with the groups “\(N \leq 162\)” and “\(N = 310\)”. However, HBMO has a slightly better performance than DPLS for the group “\(N = 245\)”. Such worse}\)

\(\text{SD, we summarize the values of \#Best obtained by DPLS and the three compared algorithms in Fig.15. Moreover, the significance of the difference between DPLS and the compared algorithms is given in Table IV.}\)

\(\text{Fig. 15. Summary of comparison results for difficult instances.}\)

\(\text{Fig. 13. Numbers of BKS and OPT for IDE, HBMO, NGHS and DPLS.}\)

\(\text{Fig. 14. Trends of BRE and ARE of DPLS for 54 instances.}\)

\(\text{\(\text{\#BKS (OPT)}\)}\)

\(\text{Table I}\)

\(\text{Table II}\)

\(\text{Fig. 1.}\)
values of BRE and ARE for DPLS are mainly due to the extreme points of the instance t245p8r1.4e1 (see Fig. 16). Moreover, we give the violin plots for the solutions of HBMO and DPLS considering large-sized instances with $N = 310$ and $M = 8$ in Fig. 17, and so confirm the competitiveness of the proposed DPLS. Furthermore, the BRE values of DPLS for these large-sized instances are given in Fig. 18. It can be seen from Fig. 18 that the BRE values of DPLS are less than 0.5% for almost all these large-sized instances. The above results prove the effectiveness of DPLS for difficult instances of TAP. Thus, DPLS can be a potential method to address real-life applications in complex conditions.

Fig. 17. Violin plots for solutions of HBMO and DPLS ($N = 310, M = 8$).

Fig. 18. BRE values of DPLS for large-sized instances ($N = 310, M = 8$).

3) Effectiveness of DPLS’s components: The dual probability learning and GNS are two main components of DPLS. To assess their effectiveness, we introduce three variants of DPLS as follows. 1) DPLS_V1 is a DPLS variant where we remove the global level learning and the dual probability learning only contains the local level learning to guide GNS; 2) DPLS_V2 is a DPLS variant where the global level learning is used only and the local level learning is disabled; and 3) DPLS_V3 is a DPLS variant where the Pareto-dominance method in Algorithm 5 is replaced by the linear sum of two gains in GNS. Note that DPLS_V1 can also be regarded as a variant of the solution methods of [23], [24] which are concerned only with the local level learning and GNS of DPLS. Hence, comparing DPLS with DPLS_V1 and DPLS_V2, the effectiveness of the interactions between the two learning levels of DPLS can be verified. In addition, we perform the comparison of DPLS_V3 and DPLS to study the competitiveness of the proposed Pareto-dominance GNS and the existing linear-sum-based approach [2]. For this comparison, DPLS_V1, DPLS_V2 and DPLS_V3 adopt the same CPU time as DPLS. We summarize the comparison results of the three variants and DPLS in Fig. 19. Moreover, the significances of the differences between DPLS and the three variants is given in Table V.

Fig. 19. Summary of results of three variants and DPLS (180 instances).

As shown in Fig. 19, for the values of #Best, DPLS reports the values of 131, 143 and 129 out of 180 instances regarding BV, AV and SD which are much better than those of the three compared variants. Meanwhile, we observe from Table V that the p-values for all the three algorithm pairs are all less than 0.05. The above results prove that the proposed interaction mechanisms between the two learning levels of DPLS and the Pareto-dominance GNS contribute significantly to the performance of DPLS.

Moreover, we draw the box plots for DPLS_V1, DPLS_V2, DPLS_V3 and DPLS for 4 instances in Fig. 20, showing that the statistical distributions of the solutions of DPLS are reasonable. In view of the above analysis, we conclude that the proposed dual probability learning and Pareto-dominance GNS are useful to enhance the performance of DPLS.

![Box plots for DPLS_V1, DPLS_V2, DPLS_V3 and DPLS](image-url)
V. REAL-LIFE CASE STUDY

In this section, we apply the proposed DPLS to solve the real-life OSAP for the production of silicon steel mentioned in Section I. The sketch of OSAP is illustrated in Fig. 21. Note that we here refer to the term “open-order slabs” as “slabs” for short. For OSAP, we first identify a number of original slabs with relatively large weight according to current customer orders and production statuses. And then these original slabs are virtually cut into a set of slabs (with small weight) to be assigned. Such a virtual cutting operator guarantees that some orders with very small weight can still have available slabs to be assigned. Next, the cutting cost (communication cost) of two slabs from the same original slabs are calculated, which is determined by both the width and the thickness of slabs. To satisfy the width requirements of orders, we introduce another cutting cost (assignment cost) resulted from the loss of materials. Accordingly, we can obtain the factory data of OSAP\(^{12}\). Afterwards, slabs are assigned to customer orders subject to the two considered capacities (see Section I).

![Fig. 21. Sketch of OSAP for the production of silicon steel.](image)

In this case study, we compare DPLS with HBMO that performs relatively better than IDE and NGHS for the 180 benchmark instances. We independently run DPLS 21 times with \(tMax = 5000 \) and calculate the related \(T_{avg}(s) \). Then, we run HBMO 21 times and for each run check the CPU time at each iteration. HBMO is terminated if the current CPU time reaches \(T_{avg}(s) \). The comparison results of HBMO and DPLS are reported in Table VI.

![Diagram showing the process of OSAP](image)

TABLE VI COMPARISON RESULTS OF HBMO AND DPLS (CASE STUDY)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(BV)</th>
<th>(AV)</th>
<th>(SD)</th>
<th>(T_{avg}(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBMO</td>
<td>5094290</td>
<td>5094295.21</td>
<td>6.44</td>
<td>195.68</td>
</tr>
<tr>
<td>DPLS</td>
<td>5094286</td>
<td>5094286.00</td>
<td>0.00</td>
<td>195.13</td>
</tr>
</tbody>
</table>

As Table VI shows, DPLS outperforms HBMO with respect to \(BV \), \(AV \) and \(SD \). Meanwhile, the value of \(T_{avg}(s) \) of DPLS is less than 200s which is quite acceptable for management practices. Moreover, for the best solution of DPLS, we give the load (ton) and utility (%) of each order regarding memory and processing requirements that have been assigned in Table VII. It shows that the best value of the memory utility is 96.18% and most of the memory utility values (7 out of 10 orders) are larger than 70%. As for the values of the processing utility, they are all smaller than the capacity of each order (the best value is 0.0%). Based on our previous survey, the above results can highly satisfy the real-life production conditions, as well as the customer satisfactions.

TABLE VII LOAD AND UTILITY OF CUSTOMER ORDERS (DPLS)

<table>
<thead>
<tr>
<th>Customer order</th>
<th>Load (ton)</th>
<th>Memory</th>
<th>Utility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>67 67 76 368 142 342 132 245 163 208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing</td>
<td>18 0 26 186 0 127 132 160 163 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility (%)</td>
<td>33.90 74.52 88.51 94.74 92.09 90.18 41.95 70.07 49.08 95.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28.96 0.00 60.50 95.77 0.00 71.43 83.90 92.30 99.37 65.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI. CONCLUSIONS AND FUTURE WORK

We proposed a dual probability learning based local search (DPLS) to solve the challenging task assignment problem (TAP). To our best knowledge, this is the first local search algorithm based on probability learning for TAP. The dual probability learning component of DPLS combines global level learning and local level learning to identify promising search regions, that are examined by the gain-based neighborhood search component. Thanks to tight interactions of these two original and complementary components, DPLS achieves a suitable balance between intensification and diversification of the given search space.

To assess the performance of the proposed algorithm, we introduced a set of 180 benchmark instances with different features and reported computational results for them with our algorithm in comparison with three reference algorithms and the general CPLEX solver. These results can serve as references for performance assessment of new TAP algorithms. Moreover, a real-life case study from an iron and steel company is introduced to show the practical values of our DPLS.

The idea of the proposed DPLS that adopts a dual probability learning mechanism is of general interest. It would be interesting to apply the same idea to solve other task assignment problems such as equilibrium TAP (ETAP), reliability-oriented TAP (RTAP) and multi-objective TAP (MOTAP).

ACKNOWLEDGMENT

We are grateful to the reviewers for their useful comments which helped us to significantly improve the paper.

REFERENCES

Zuocheng Li is currently working toward the Ph.D. degree in Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China. His research interests include modeling and solution methods for combinatorial optimization problems, machine learning and their applications. He has participated in two real-life application projects with cooperative enterprises about optimization algorithms in decision supporting systems.

Lixin Tang (M’09–SM’14) received the B.Eng. degree in industrial automation, the M.Eng. degree in systems engineering and the Ph.D. degree in control theory and application from Northeastern University, Shenyang, China, in 1988, 1991, 1996, respectively. He is a Fellow of Chinese Academy of Engineering, a Chair Professor of the Institute of Industrial & Systems Engineering, Northeastern University; the Director of Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, China; and the Head of Centre for Artificial Intelligence and Data Science.

Jin-Kao Hao received the B.S. degree in computer science from the National University of Defense Technology, China, in 1982; the M.S. degree in computer science from the National Institute of Applied Sciences, Lyon, France, in 1987; the Ph.D. degree in constraint programming from the University of Franche-Comté, France, in 1991 and the Professorship Diploma (HDR, Habilitation Diriger des Recherches) from the University of Science and Technology of Montpellier, France, in 1998. He holds a full Professor position with the Computer Science Department at the University of Angers, France since 1999 and is a Senior Fellow of the Institut Universitaire de France since 2015. His research lies in the design of effective algorithms and intelligent computational methods for solving large-scale combinatorial search problems. He is interested in various application areas including data science, complex networks, and transportation. He has authored or co-authored more than 250 peer-reviewed publications and co-edited 9 books in Springer LNCS series. He has served as an invited Member of more than 200 Program Committees of International Conferences and is an Associate Editor and Editorial Board member of 8 International Journals.