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Abstract. This work deals with an original problem with regard to the
traditionally sequential planning process in public transit networks. This
problem aims at modifying the network’s timetables without rendering
the vehicle and driver schedules obsolete. The objective is to improve the
quality of service for passengers through number and quality of transfers.
This approach goes in the opposite direction compared to the usual ap-
proach which schedules resources once timetables are set. We propose a
model and a solution method based on tabu search and a neighborhood
specifically developed. Experiments are led on five instances related to
a real transit network. Important gains are obtained on the considered
case study, allowing for better mobility of users inside the network and
on the intermodal level.
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1 Introduction

We address the problem of modifying the timetables of a running (timetabled
and scheduled) transit network to improve its quality of service through transfers
while maintaining the vehicle and driver trip assignments. This problem is met
by transit planners in practice but is counter–intuitive regarding the treatment
of transit planning in the literature, according to which lines timetabling is
operated first and resource scheduling is only operated next [1]. We call this
problem Schedules–based re–Timetabling (SbrT) in the rest of this paper.

In a running transit network, i.e. in which all the planning steps have been
completed, the context and environment continue to evolve. For instance, changes
in the demand or in the offer of coordinated modes can occur, leading to a sit-
uation in which changes in the timetable could benefit to the quality of service.
The traditional process would be to define and apply changes to the timetables
and then restart the resource planning process. However, planning vehicle and
driver schedules is an extremely complex task that needs to take into account
a great number of constraints, objectives and parameters. This can be too de-
manding a task to even consider applying timetable changes in the first place.
Therefore, to deal with this problem, we propose a model and a method to boost
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the service quality of transit networks while leaving unchanged the sequences of
trips assigned to vehicles and drivers.

With regard to our problem here, one study is noteworthy, although the SbrT
is not its specific purpose. In [4], Jansen et al. propose to improve the quality and
number of transfers in a transit network through shifts in the line starting times.
This implies that all the runs of a given line are shifted by the same value and
headways (frequencies) are fixed. It takes no account of resource usage, implying
that this method is rather directed toward urban transit networks, and assumes
that interlining is not practiced, so that vehicle allocation is not impacted by
the changes. In extra–urban networks, the risk is to obtain a timetable that is
not compatible with the current vehicle assignments or worse, with the available
number of resources. Another approach to reorganize the timetables without
requiring additional vehicles can be to include minimizing the fleet size to the
objectives [6]. However, the risk is high that the resource schedules will need a
total reconstruction, thus not answering our problem here.

2 Problem Description

The problem consists in slightly modifying the timetables so as to improve both
quantity and quality of the transfer opportunities, while respecting the trip se-
quences assigned to vehicles as well as to drivers. Results for this problem are
new timetables for the lines.

In order to better understand the scheduling part of the planning process, let
us first present the constitution of a resource trip assignment. Such an assignment
(see Figure 1) is a sequence of trips, deadheads (to and from the depot as well
as between trips), turnaround time and stopping or pausing time according to
the type of resource (vehicle or driver).

Fig. 1. Vehicle trip assignment

2.1 Objective: Quality and Quantity of Transfer Opportunities

The objective consists in creating numerous and high–quality transfer oppor-
tunities for users. A non–captive users policy is applied, meaning a transfer
opportunity happens only when the transfer waiting time is inside a predefined
interval. A minimal, ideal and maximal waiting time are all specified for each
kind of transfer, as well as a level of importance. The quality of the transfer op-
portunity is proportional to the closeness with the ideal waiting time. Transfers
among lines of the network as well as with external modes are considered here.
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2.2 Constraints

A set of constraints applies to the timetable:

Maximal Shift. The current timetable has very likely been designed to com-
ply with the other main criterion for quality of service: headways. Headway
determination permits to provide a regular service for one, and second, to
adapt to demand peaks and prevent overcrowding. In order to preserve this
adaptation to the demand fluctuations, we only allow a shifting value com-
prised inside a definite interval.

Driver Trip Assignment. The existing driver assignment must be compati-
ble with the new timetable. Concretely, each driver must be able to serve
the same sequence of line runs, turnarounds, deadheads and pausing times,
without any of these elements overlapping. In terms of duration, only paus-
ing times may vary. To respect social issues linked to pause duration while
introducing some flexibility in the model, we allow each waiting time to
vary inside a pre–defined interval. The human planner thus provides a list
of intervals (in minutes) as data for the problem. For instance, if the list is:
[0-15];[16-30];[31-45];[46-N], then the duration of an initial 28-minute long
pause may vary between 16 and 30 minutes in the final solution.

Vehicle Trip Assignment. The existing vehicle assignment must be compat-
ible with the new timetable. Concretely, each vehicle must be able to serve
the same sequence of line runs, turnarounds, deadheads and stopping times,
without any of these elements overlapping. In terms of duration, only stop-
ping times may vary.

3 Problem Formulation

We define a model allowing for a high level of flexibility, in which the set of
decision variables matches the starting time of all the runs in the network. Ad-
ditionally, a set of state variables is kept up to date to facilitate the computation
of costs linked to transfers. This latter set includes the stopping times of the runs
at intermediate stops along the runs. To compute the value of these variables, we
consider fixed running times by runs along the search process. This is acceptable
due to the short shifting span allowed for each starting time.

3.1 Notations

Let L be the set of lines, R the set of runs, S the set of stops, V the set of
vehicles, D the set of drivers, T the set of transfers, and H the planning horizon.

– For each line l ∈ L:
• Rl ⊂ R: set of runs served.

– For each run r ∈ R:
• Sr ⊂ S: set of served stops.
• sα

r , sω
r : first and last stop.
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• h←r,s, h
→
r,s: arriving and leaving time for s ∈ Sr in the initial timetable.

• h(r): initial starting time for run r (h(r) = h→r,sα
r
).

• vr: vehicle assigned to r.
• dr: driver assigned to r.
• r+

v : run following r in the schedule of vehicle v = vr.
• r+

d : run following r in the schedule of driver d = dr.
– For each transfer t = (l1, s1, l2, s2) ∈ T taking place at stops s1, s2 ∈ S on

lines l1, l2 ∈ L:
• ilt: level of importance
• �wtt�, [wtt], �wtt�: minimal, ideal and maximal transfer waiting time.

– ttvr,r′ and ttdr,r′ : turnaround time between two consecutive runs r and r′

inside a vehicle and a driver trip assignment respectively.
– dhvr,r′ and dhdr,r′ : deadhead time between two consecutive runs r and r′

inside a vehicle and a driver trip assignment respectively. This deadhead can
be direct between two runs, or divided in two parts when a stop at the depot
is involved.

– �dwr,r′� and �dwr,r′�: minimal and maximal duration for the pausing time
between two consecutive line runs inside a driver trip assignment. It is de-
duced from the initial pausing time (h(r′) − h←r,sω

r
− ttdr,r′ − dhdr,r′), and

from the intervals for pause durations (Section 2.2).
– �S�: maximal time shift allowed for each run starting time.

Decision Variables and Values. The decision variables are the starting times
π(r) ∈ H of each run r ∈ R.

The set of state variables include the arriving and departing times of
runs at stops along the routes. Let π←r,s ∈ H and π→r,s ∈ H, ∀r ∈ R, ∀s ∈ Sr

represent these state variables. The decision variable π(r) corresponds to
state variable π→r,sα

r
.

A configuration σ is a complete assignment of values in H to the set of
decision variables.

3.2 Objective: Quality and Quantity of Transfer Opportunities

The cost function relative to transfers is a nonlinear function of the waiting time
and favors the most heavily close-to-ideal waiting times. The cost incurred to the
configuration is also weighed by the relative level of importance of the transfer.
We compute the transfer cost for each couple of run for the arriving line and
run for the departing line. Each gap belonging to the allowed interval means a
transfer opportunity and generates an addition to the cost of the configuration.
This is in the context of a maximization problem.

f(σ) =
∑

t∈T
t=(l1,s1,l2,s2)

[

ilt ∗
∑

r1∈Rl1
r2∈Rl2

fT r(t, π←r1,s1
, π→r2,s2

)
]
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where

fT r(t, h1 ∈ H, h2 ∈ H) =

⎧
⎨

⎩

increasing from 0.5 to 1 if �wtt�<h2 − h1 < [wtt]
decreasing from 1 to 0 if [wtt]<h2 − h1 <�wtt�
0 o.w.

Only the costs related to transfers among lines of the network are presented
here, but those related to intermodal transfers are computed in the same way
and included in the objective function.

3.3 Constraints

Complete Assignment

∀r ∈ R, π(r) ∈ H (1)

Maximal Shift

∀r ∈ R, |π(r) − h(r)| ≤ �S� (2)

Driver Trip Assignment. Let att(r, r′) = π(r′) − π←r,sω
r
− dhdr,r′ − ttdr,r′ be

the waiting time for the driver between consecutive runs r and r′ in his
service.

∀d ∈ D, ∀(r, r′) ∈ R2, (r′ = r+
d ) ⇒ (�dwr,r′� ≤ att(r, r′) ≤ �dwr,r′�) (3)

Vehicle Trip Assignment. Let sta(r, r′) = π(r′) − π←r,sω
r
− dhvr,r′ − ttvr,r′ be

the stopping time of the vehicle between consecutive runs r and r′ in its
service.

∀v ∈ V , ∀(r, r′) ∈ R2, (r′ = r+
v ) ⇒ (sta(r, r′) ≥ 0) (4)

4 Solution Approach

A Tabu Search method [3] is used. The initial solution is based on the timetables
and resource (vehicle and driver) schedules from the running transit network.
The search starts from this feasible solution and remains at all time inside the
feasibility domain. A preprocessing phase is applied to reduce the domain of the
variables. A neighborhood mechanism is then used to modify the departure times
of the trips while preventing overlaps inside the resources schedules. Parameters
for our Tabu Search implementation are exposed in the following sections. The
output provided by the method consists in new line timetables for the transit
network, with better quality with respect to the objective function, while the
driver and vehicle trip sequences remain feasible.



26 V. Guihaire and J.-K. Hao

4.1 Search Space and Preprocessing

The goal of the preprocessing phase is to reduce the domains of the variables by
constraints propagation, and to compute what can be computed once and for all
at the beginning of the process, so as to fasten the search.

Domain reduction - node consistency. Given the variables’ initial domain
H and the maximal shift constraint, the size of the domain of each variable
can be reduced to twice the size of the maximal shift.

∀r ∈ R, π(r) ∈ [h(r) − �S�; h(r) + �S�]

Preprocessing - arc consistency. In the model, constraints on the respect
of the initial assignments are crucial. It is imperative to insure that none of
the elements in these assignments overlaps its neighbors during the search.
In order to prevent such a situation, we must consider the duration of each
element of the assignments. Each of them has a fixed duration, except for
stopping and pausing times. It is thus possible to compute the minimal
time interval separating the starting time of a run from the starting time of
the runs before and after it inside the vehicle and driver assignments. This
interval constrains the domains of the variables along the search. It includes
the duration of the run, the turnaround time, the deadheading time, and in
the case of the driver schedule, the minimal pausing time. Additionally, with
respect to the driver schedule, a maximal time interval is defined that takes
into account the maximal pausing time allowed with respect to its initial
value and the user-parameterized list of intervals.

4.2 Neighborhood - TripShift

We define a neighborhood mechanism, TripShift, to generate simple and fast
moves while respecting the contraints. A move from TripShift modifies the value
of a single variable (i.e. a trip). A neighbor solution is obtained by shifting its
value by n minutes. n is chosen inside Z

∗ and to respect the contraints, so that
the search remains inside the feasibility domain.

Let mvTShift = (r, n) be a move from this neighborhood.
Let σ = (t1, t2, ..., t|R|) be the current solution and σ′ = σ ◦ mvTShift a

neighbor solution. Then, σ′ = (t′1, t′2, ..., t′|R|) obeys to the following description:

∀r∗ ∈ R,

{
t′r∗ = tr∗ + n if r∗ = r
t′r∗ = tr∗ o.w.

4.3 Parameters of Tabu Search for the SbrT

– The initial solution consists in the current line timetables, vehicle schedules
and driver schedules.

– The neighborhood used is TripShift. It is fully explored at each iteration.
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– For the sake of diversification and to prevent the search from stagnating, the
selection of moves to apply is random among those of maximal cost.

– Each move remains inside the tabu list for a random number of iterations.
This number, which determines the tabu tenure at each iteration, varies
between two pre–defined bounds (Section 5.3).

– The stop criterion used is the computational time.

5 Experimentations and Numerical Results

5.1 Data Instances

To define data instances, we used the structure and timetables from a real extra–
urban transit network, located in a French area called Loiret. The network serves
three average–size cities and many small villages. It counts 50 oriented lines, 673
stops, 30 activities (trains, schools) in connection with the network, and 282
types of possible transfers. A type of transfer is a pair of lines crossing at a stop
and among which a transfer possibility may thus be created. The timetable for
a typical day has 318 runs. Three transport operators serve the network (on 8,
16 and 26 lines each). Concerning the transfer objective, 180 possibilities occur
in the current network, for an objective function value of 947.462. Since resource
usage data is confidential, we do not have access to the constitution of the vehicle
and driver trip assignments defined by the transit operators. We used a classical
approach to determine five sets of resource schedules, whose characteristics are
presented in Table 1:

Table 1. Number of resources involved in each instance

Instance1 Instance2 Instance3 Instance4 Instance5

Number of vehicles 91 91 91 91 91
Number of drivers 170 171 163 171 159

– the vehicle trip assignments are generated using an exact auction algorithm
[2] depending on a weighing strategy; five sets of assignments are gener-
ated, with at least 30% difference among each pair of them (with respect to
consecutive trips in the assignments).

– the driver trip assignments are generated based on the vehicle trip assign-
ments using a classical bi–level driver scheduling algorithm [5].

5.2 Numerical Results

Our algorithm was coded in C++, compiled with VC++ 9.0, on a laptop equipped
with Windows Vista, a 2.10 Ghz Intel(R) Core(TM)2 Duo CPU processor and
4Go RAM. For these tests, we used a computational time of 1 minute as unique
stop criterion for our algorithm. A series of 30 tests was launched on each in-
stance, given the non deterministic behavior of the tabu algorithm.
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The tabu tenure is dynamic. The number of iterations during which each move
remains in the list varies between the arbitrary values of 7 an 20 (see Section
5.3). The maximal allowed shift by run is 10 minutes (in each direction), a value
which represents a compromise between size of the search space (which needs to
be large enough to provide opportunities for improvement) and respect of the
initial resources organisation (especially in terms of headway repartition).

Table 2 presents the number of transfer possibilities by data instance, in the
initial timetable (row 2) and in the solution obtained by the algorithm (row
3, mean and standard deviation). Row 4 shows the percentage of improvement
between the two solutions. Table 3 presents the results of the same series of tests,
in terms of value of the objective function.

Table 2. Mean number (standard devi-
ation) of transfer opportunities, and im-
provement compared to the initial solution

Initial Tabu Search with
Solution TripShift

mean (s-d) %

Instance 1

180

245.07 (0.25) 36.15
Instance 2 247 (0) 37.22
Instance 3 245.2 (0.41) 36.22
Instance 4 243 (0) 35.00
Instance 5 245.1 (0.31) 36.17

Table 3. Mean value (standard deviation)
of the objective function, and improvement
compared to the initial solution

Initial Tabu Search with
Solution TripShift

mean (s-d) %

Instance 1

947.462

1057.37 (0.12) 11.60
Instance 2 1061.63 (0) 12.05
Instance 3 1072.58 (0.08) 13.21
Instance 4 1047.14 (0) 10.52
Instance 5 1072.35 (0.06) 13.18

Those tables show that the algorithm brings a sizeable improvement to the
initial solution, in terms of both criteria used. On average, it brings a 36.15%
increase in the number of transfer possibilities, and a 12.11% improvement in
terms of value of the objective function. This difference is explained by the
additional consideration in the objective function of the quality of the new and
existing transfer possibilities.

These test results show that the considered problem, going backwards in the
traditional transit planning process, owns the potential for improvement in the
level of quality of service. Furthermore, the proposed model offers a good flexibil-
ity for re–timetabling the network without condemning the resources schedules.

5.3 Discussion

Computational time. The computational time needed to attain the final so-
lution is very brief. The algorithm reaches its best value after 19.3 seconds on
average in the performed series of tests. This computational time is accept-
able for the transit operators, considering that SbrT is a punctual operation
that does not require real–time results.

Tabu Tenure. We chose to use a variable number of iterations of presence
in the tabu list for each generated move. This number is randomly chosen
inside a pre–defined interval. A set of different intervals was tested, and
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the impact of this parameter revealed to be very weak. Table 4 shows the
results obtained with the extreme values tested for the interval, the upper
bound of the largest interval matching approximately half the average size of
the neighborhood. The method slightly benefitted from the increase in the
number of iterations of presence. Complementarily, Table 5 shows that when
moves remain in the tabu list between 500 and 1000 iterations, the complete
neighborhood exploration (with associated evaluations) is on average, 2.65
times longer than when moves remain in the list for 7 to 20 iterations.

Table 4. Objective function value by in-
stance and tabu list size

TripShift
[7-20] [500-1000]

Instance 1 1057.37 1057.52
Instance 2 1061.63 1062.62
Instance 3 1072.58 1072.65
Instance 4 1047.14 1047.25
Instance 5 1072.35 1072.37

Table 5. Average time (in seconds) needed
for full exploration of the neighborhood by
instance and tabu list size

TripShift
[7-20] [500-1000]

Instance 1 0.012 0.031
Instance 2 0.010 0.028
Instance 3 0.013 0.033
Instance 4 0.011 0.030
Instance 5 0.012 0.032

We observe that the results are of better quality using the interval [500-
1000] compared with interval [7-20] in all five cases, however the observed
variation is small. At the same time, larger values for the number of iterations
of presence slows the search down, since a great number of verifications needs
to be performed. In view of the combination of these two effects, we chose to
keep the [7-20] interval in our method, to prevent negative effects in larger
networks.

Upper Bound Computation. We tried to compute an upper bound for the
problem, by taking advantage of the maximal shift constraint, which restricts
the domain of each variable. We determined the set of all the transfer oppor-
tunities that could be generated independently (ie when the domains of both
variables - runs implied in the transfer - encompassed values that fit into the
allowed waiting time interval for the transfer). For each one, we computed
the best cost that could be achieved. The upper bound obtained consists in
399 transfer opportunities and a 1332.11 value for the objective function.
The drawback of this method is that it does not take into account the fact
that a run can be involved in many transfer opportunities and assigns a po-
tentially different value to the run for each transfer opportunity, providing
unrealistic goals for the algorithm. This explains the large difference between
the bound and the results actually achieved.

Neighborhood. We developed and tested a second neighborhood, which con-
sists in shifting at once all the elements of a driver trip assignment by the
same value, while preserving the feasibility of the vehicle trip assignments.
This neighborhood proved to define a somewhat too small search space, pre-
serving most of the initial schedules to the expense of fewer improvement
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possibilities. TripShift defines in comparison an interesting compromise be-
tween the improvement of the quality of service and the preservation of the
existing resource usage.

6 Conclusion

An original problem was considered here, that goes backwards in the traditional
transit planning process: the Scheduled–based re–Timetabling problem. We de-
fine a model based on the assignment of new starting times to all the runs in the
timetables. Major constraints impose that the existing vehicle and driver trip
assignments are preserved, and that their elements do not overlap despite the
shifts in their starting times. The advantages of this model are its flexibility and
its high level of preservation of the initial schedules (both in terms of number of
resources needed and social acceptability).

We developed an adapted neighborhood mechanism that we integrated inside
a method relying on tabu search. Tests were carried out on five generated in-
stances based on a real network, and allowed a sensible improvement in terms of
transfer opportunities on the case study. This combination of model and method
shows the potential of the SbrT on a running schedule in terms of quality of ser-
vice for transit users.
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