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Abstract

Possibilistic logic bases and possibilistic graphs are two different frameworks of in-

terest for representing knowledge. The former ranks the pieces of knowledge (expressed

by logical formulas) according to their level of certainty, while the latter exhibits rela-

tionships between variables. The two types of representation are semantically equivalent

when they lead to the same possibility distribution (which rank-orders the possible in-

terpretations). A possibility distribution can be decomposed using a chain rule which

may be based on two different kinds of conditioning that exist in possibility theory (one

based on the product in a numerical setting, one based on the minimum operation in a

qualitative setting). These two types of conditioning induce two kinds of possibilistic

graphs. This article deals with the links between the logical and the graphical frame-

works in both numerical and quantitative settings. In both cases, a translation of these

graphs into possibilistic bases is provided. The converse translation from a possibilistic

knowledge base into a min-based graph is also described. � 2002 Elsevier Science Inc.
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1. Introduction

Possibilistic logic is an offspring of Zadeh’s possibility theory [31], which
offers a framework for the representation of states of partial ignorance owing
to the use of a dual pair of possibility and necessity measures [13]. Possibility
theory may be quantitative or qualitative [14,19] according to the range of
these measures which may be the real interval ½0; 1�, or a finite linearly ordered
scale as well. Possibilistic logic (e.g., [12]) has been developed for more than 10
years. It provides a sound and complete machinery for handling qualitative
uncertainty with respect to a semantics expressed by means of possibility dis-
tributions which rank-order the possible interpretations. At the syntactic level,
possibilistic logic handles pairs of the form ðp; aÞ; where p is a classical logic
formula and a is an element of a totally ordered set. The pair ðp; aÞ expresses
that the formula p is certain at least to the level a, or more formally by
NðpÞP a, where N is the necessity measure associated to the possibility dis-
tribution expressing the underlying semantics. Possibilistic logic is essentially
qualitative since only the preordering induced on the formulas is important
(NðpÞ > NðqÞ means ‘‘p is more certain than q’’). Possibilistic logic has a
complexity slightly higher than classical logic since its complexity is about
log2 n � SAT where n is the number of certainty levels used in the knowledge
base and SAT is the complexity of the satisfaction problem in classical logic.

The notion of possibilistic graph for the representation of multidimensional
possibility distributions is not new [17]. There are two kinds of representation:
undirected graphs or hypergraphs ([17,21]) and directed acyclic graphs [20].
The latter are the counterparts of probabilistic Bayesian networks [26,23] in the
framework of possibility theory. There are also recent techniques for learning
possibilistic networks from imprecise data [21,27]. In probability theory, gra-
phical structures are essential for efficient uncertainty propagation, because
probabilistic logic is computationally very difficult to handle. However, be-
cause of the existence of the possibilistic logic machinery, there is not the same
necessity to introduce graphical structures in possibility theory, for problems
described by means of Boolean variables.

Yet Bayesian-like networks have a clear appeal for knowledge acquisition
and could be useful in the case of possibilistic knowledge as much as the case of
probabilistic knowledge.

The goal of this paper is to establish a bridge between directed possibilistic
graphs and possibilistic logic. We wish to take advantage of the graphical
representation, provided by directed graphs, while preserving the connection to
a formal logical framework. Possibilistic logic has a kind of expressive power
different from the one of directed possibilistic graphs, since, in the latter,
knowledge must be structured as a directed acyclic graph (DAG). The basic
information encoded in DAGs is a set of conditional possibility distributions
whose aggregation defines a joint possibility distribution. However conditional
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possibility does not admit of a single definition. This article shows how to encode
a directed possibilistic graph in possibilistic logic. We also give the converse
transformation. The following section gives the necessary background on pos-
sibilistic logic. Section 3 discusses the notion of possibilistic conditioning. Sec-
tion 4 introduces directed possibilistic graphs. Section 5 studies their encoding
in possibilistic logic. Section 6 discusses the problem of recovering the initial
conditional possibility distribution from the joint possibility distribution com-
puted with the chain rule, and the discussion briefly refers to the idea of possi-
bilistic independence. Section 7 proposes an encoding of a set of possibilistic logic
formulas into a directed possibilistic graph. Proofs are provided in Appendix A.

2. Possibilistic logic

Let L be a finite propositional language. p; q; r; . . . denote propositional
formulas. > and ?, respectively, denote tautologies and contradictions. ‘ de-
notes the classical syntactic inference relation. X is the set of classical inter-
pretations x of L, and ½p� is the set of classical models of p (i.e, interpretations
where p is true). In the following, we shall write x 2 ½p� or x 
 p indifferently.

2.1. Possibility distributions and possibility measures

The basic element of possibility theory is the possibility distribution p which
is a mapping from X to the interval ½0; 1�. The degree pðxÞ represents the
compatibility of x with the available information (or beliefs) about the real
world. By convention, pðxÞ ¼ 0 means that the interpretation x is impossible,
and pðxÞ ¼ 1 means that nothing prevents x from being the real world. When
pðxÞ > pðx0Þ, x is a preferred candidate to x0 for being the real state of the
world. A possibility distribution p is said to be normal if 9x 2 X, such that
pðxÞ ¼ 1, namely there exists at least one interpretation which is consistent
with all the available beliefs.

Given a possibility distribution p, we can define two different ways of rank-
ordering formulas of the language from this possibility distribution. This is
obtained using two mappings grading, respectively, the possibility and the
certainty of a formula p:
• the possibility (or consistency) degree PðpÞ ¼ maxfpðxÞ : x 2 ½p�g which

evaluates the extent to which p is consistent with the available beliefs ex-
pressed by p [31]. It satisfies:

8p; 8q Pðp _ qÞ ¼ maxðPðpÞ;PðqÞÞ;
• the necessity (or certainty, entailment) degree NðpÞ ¼ 1�Pð:pÞ which eval-

uates the extent to which p is entailed by the available beliefs. We have [13]:

8p; 8q Nðp ^ qÞ ¼ minðNðpÞ;NðqÞÞ:
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2.2. Possibilistic knowledge bases

A possibilistic knowledge base is a finite set of weighted formulas

R ¼ fðpi; aiÞ; i ¼ 1;mg;

where ai > 0 is understood as a lower bound on the degree of necessity NðpiÞ.
Formulas with zero degree are not explicitly represented in the knowledge base
(only beliefs which are somewhat accepted are explicitly represented). The
higher the weight, the more certain the formula.

Definition 1. Let R be a possibilistic knowledge base, and a 2 ½0; 1�. We call the
a-cut (resp. strict a-cut) of R, denoted by RPa (resp. by R>a), the set of classical
formulas in R having a certainty degree at least equal to (resp. strictly greater
than) a.

A possibilistic knowledge base R is said to be consistent if its classical
support, obtained by forgetting the weights, is classically consistent. We define
by

IncðRÞ ¼ maxfai : RPai ‘?g

the inconsistency degree of R. IncðRÞ ¼ 0 means that RPai is consistent for all
ai.

From a possibilistic knowledge base, a syntactic possibilistic entailment has
been defined as follows:

Definition 2. Let R be a consistent possibilistic knowledge base and (p; a) a
possibilistic formula (with p a classical formula and a 2 ð0; 1�), p is entailed
from R to degree a denoted by R ‘ ðp; aÞ, iff RPa [ f:pg is inconsistent.

When R is inconsistent, then (p; a) is a non-trivial consequence of R, if and
only if

(i) IncðR [ fð:p; 1ÞgÞ > IncðRÞ and
(ii) IncðR [ fð:p; 1ÞgÞP a.

This consequence relation is closely related to the so-called rational entailment
in the sense of Lehmann and Magidor [24]; see [13,18].

2.3. From possibilistic knowledge bases to possibility distributions

Given a possibilistic knowledges base R, we can generate a unique possibility
distribution by associating to each interpretation, its level of compatibility with
explicit beliefs, i.e., with R. When a possibilistic knowledge base only consists
of one formula fðp; aÞg, then each interpretation x which satisfies p should
have possibility degree pðxÞ ¼ 1, since it is consistent with p. Each interpre-
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tation x which falsifies p should have a possibility degree pðxÞ such that the
higher a (i.e., the more certain p), the lower pðxÞ; in particular, if a ¼ 1 (i.e., p
is completely certain), then pðxÞ ¼ 0, namely x is impossible. One way to
realize this constraint is to assign the degree 1� a to pðxÞ with a numerical
encoding. Therefore, the possibility distribution associated with R ¼ fðp; aÞg is
8x 2 X,

pfðp;aÞgðxÞ ¼
1 if x 2 ½p� ði:e: x satisfies pÞ;
1� a otherwise ði:e: x falsifies pÞ:

�

When R ¼ fðpi; aiÞ; i ¼ 1;mg is a general possibilistic knowledge base, then
all the interpretations satisfying all the beliefs in R have the highest possibility
degree, namely 1, and the other interpretations will be ranked w.r.t. the most
certain belief that they falsify, namely we get [12]:

Definition 3. The possibility distribution associated with a knowledge base R is
defined, 8x 2 X, by

pfðp;aÞgðxÞ ¼
1 if x 2 ½pi� 8ðpi;aiÞ 2 R;
1�maxfai : ðpi;aiÞ 2 R; x 62 ½pi�g otherwise:

�

Thus, pR can be viewed as the result of the combination of the pfðpi ;aiÞg’s using
the minimum operator, that is

pRðxÞ ¼ minfpfðpi;aiÞgðxÞ : ðpi; aiÞ 2 Rg:

Example 1. Let R ¼ fðq; 0:3Þ; ðq _ r; 0:5Þg. Then
pRðqrÞ ¼ pRðq:rÞ ¼ 1; pRð:qrÞ ¼ 0:7; pRð:q:rÞ ¼ 0:5:

The two interpretations qr and q:r are the preferred ones since they are the
only ones which are consistent with R, and :qr is preferred to :q:r, since the
highest belief falsified by :qr (i.e., ðq; 0:3Þ) is less certain than the highest belief
falsified by :q:r (i.e., (q _ r, 0.5)).

Note that the possibility distribution pR is not necessarily normalized. Namely,
pR is normalized if and only if R is consistent. Moreover, it can be verified that

IncðRÞ ¼ 1�max
x

pRðxÞ:

Definition 4. Two possibilistic knowledge bases R and R0 are said to be se-
mantically equivalent if and only if pR ¼ pR0 .

Finally, it can be checked that [12]

R ‘ ðp; aÞ iff pR 6 pfðp;aÞg:
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The following definition and lemmas are useful for the rest of the paper.

Definition 5. Let ðp; aÞ be a belief in R. Then ðp; aÞ is said to be subsumed by R if

ðR� fðp; aÞgÞPa ‘ p:

Similarly, ðp; aÞ is said to be strictly subsumed by R if R>a ‘ p.

Lemma 1. 1Let ðp; aÞ be a subsumed belief of R. Then R and R0 ¼ R� fðp; aÞg
are equivalent.

As a corollary of the previous lemma, we can add or remove subsumed
beliefs without changing the possibility distribution. This means that several
syntactically different possibilistic knowledge bases may have the same possi-
bility distribution as their semantic counterpart. In such a case, it can be shown
that their a-cuts, which are classical knowledge bases, are logically equivalent
in the usual sense. The following lemma exhibits similar conclusions when we
remove tautologies from knowledge bases.

Lemma 2. Let ð>; aÞ be a tautological belief of R. Then R and R0 ¼ R� fð>; aÞg
are equivalent.

The proof is obvious since tautologies are satisfied by each interpretation and
using Definition 3 only formulas which are falsified by a given interpretation
are taken into account when computing the possibility degree of this inter-
pretation. In fact, since pfð>;aÞg ¼ 1 8a; pfð>;aÞg has no effect on pR.

The following proposition shows that if a knowledge base does not contain
strictly subsumed formulas, then the weights associated with formulas in the
knowledge base R is the same as the one obtained from the possibility distri-
bution associated with R. Let NpR be the necessity measure induced by pR.

Proposition 1. Let R be such that it does not contain any strictly subsumed for-
mulas. Then NpRðpÞ ¼ a 8ðp; aÞ 2 R.

Knowledge bases which do not contain strictly subsumed formulas corres-
ponds to the so-called partial epistemic entrenchments in [30].

3. Possibilistic conditioning

In this section, we discuss the basic notion used in directed possibilistic
graphs, i.e. conditioning in the framework of possibility theory. In the

1 All the proofs of lemmas and propositions of this paper are given in Appendix A.
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remaining of this paper we consider only non-dogmatic possibility distribu-
tions p on X, such that pðxÞ > 0 for all x 2 X. They are possibility distribu-
tions which exclude no interpretation, be it very implausible. Since we assume
only non-dogmatic possibility distributions, it implies that pðpÞ > 0 as soon as
p is not a contradiction.

3.1. Definitions

The notion of conditioning is crucial in probability theory. It is usually
expressed by the following Bayesian equation:

P ðqjpÞ ¼ P ðp ^ qÞ
P ðpÞ for P ðpÞ > 0:

In possibility theory, there exist several definitions for conditioning, depending
on whether the setting is qualitative or numerical.

Viewed as a revision process, conditioning in possibility theory transforms a
possibility distribution p and a new and totally reliable information p 6¼? into
a new possibility distribution denoted by p0 ¼ pð�jpÞ. Natural properties for p0

are:
(A1) p0 should be normalized;
(A2) 8x 62 ½p�; p0ðxÞ ¼ 0;
(A3) 8x; x0 2 ½p�; pðxÞ > pðx0Þ if and only if p0ðxÞ > p0ðx0Þ;
(A4) if PðpÞ ¼ 1, then 8x 2 ½p�, pðxÞ ¼ p0ðxÞ;
(A5) 8x 2 X if pðxÞ ¼ 0, then p0ðxÞ ¼ 0.

A1 says that the new state of knowledge is consistent. A2 confirms that p is a
totally reliable piece of information. A3 says that the new possibility distri-
bution should not alter the previous relative order between models of p. A4

says that if p is completely possible, then the revision does not affect p on the
models of p. A5 says that impossible worlds remain impossible after condi-
tioning. A5 does not apply to non-dogmatic possibility distributions.

The above properties do not guarantee a unique definition of conditioning.
Indeed, the effect of the axiom A2 may result in a sub-normalized possibility
distribution, due to discarding the best models of p. Restoring the normali-
sation, so as to satisfy A1, can be done in two different ways:
• In an ordinal setting, we assign the maximal possibility level to the best mod-

els of p 6¼?, and we get [16]:

pðxjmpÞ ¼
1 if pðxÞ ¼ PðpÞ; x 2 ½p�;
pðxÞ if pðxÞ < PðpÞ; x 2 ½p�;
0 if x 62 ½p�:

8<
:

This definition of conditioning will be called min-based conditioning. It sat-
isfies the above five axioms.
• In a numerical setting, we proportionally shift up all models of p:
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pðxj�pÞ ¼
pðxÞ
PðpÞ if x 2 ½p�;
0 otherwise:

�

This definition of conditioning will be called product-based conditioning. It
also satisfies the above five axioms.

Both conditionings satisfy an equation of the form

PðqÞ ¼ �ðPðqjpÞ;PðpÞÞ; ð1Þ

which is similar to Bayesian conditioning, respectively, for � ¼ min [22] and
the product (denoted by �, or omitted, in the following). The rule based on the
product is much closer to genuine Bayesian conditioning than the qualitative
conditioning based on the minimum which is purely based on comparing levels;
conditioning based on the product requires more of the structure of the unit
interval and is a special case of Dempster rule of conditioning [29]. When
conditioning is based on the minimum, the equation does not lead to a unique
definition of conditioning. The solution given by ‘‘jm’’ is the least specific (i.e.,
the greatest) solution satisfying (1).

3.2. Conditioning¼ combining+ normalizing

Possibilistic definitions of conditioning can be retrieved from, first, a com-
bination of possibility distributions with the minimum operator, followed by
an operation of normalization. Let p be the initial possibility distribution and
pp the possibility distribution expressing that the piece of information p is sure
(that is ppðxÞ ¼ 1 if x 2 ½p� and ppðxÞ ¼ 0 otherwise). The conjunctive com-
bination is defined by

pconjðxÞ ¼ minðpðxÞ; ppðxÞÞ:

It is easy to verify that the following operation of normalization, denoted by
N1, applied to pconj gives exactly the definition of min-based conditioning:

pN1ðxÞ ¼ 1 if pconjðxÞ ¼ hðpconjÞ;
pconjðxÞ otherwise:

�

with hðpconjÞ ¼ maxx0 pconjðx0Þ.
When conditioning is based on the product, the normalization, denoted by

N2, is made with

pN2ðxÞ ¼ pconjðxÞ
hðpconjÞ

;

(hðpconjÞ is supposed to be positive since p is non-dogmatic).
Note that in general, the combination of two possibility distributions

with the minimum operator, followed by a normalisation step N1 is not an
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associative process [15,28], while the combination with the product followed by
the normalisation step N2 is an associative operator [15].

However, both modes of conditioning are associative as shown by the fol-
lowing proposition:

Proposition 2. Let p be a (non-dogmatic) possibility distribution, let p and q be
two non-mutually exclusive propositions. Let p1 ¼ pð�jpÞ and p2 ¼ p1ð�jqÞ. Let
p3 ¼ pð�jqÞ and p4 ¼ p3ð�jpÞ.
Then p2 ¼ p4.

This proposition is not valid when conditioning on mutually exclusive
propositions p and q. Indeed, then p2ðxÞ ¼ 1 if x 
 q and 0 otherwise, while
p4ðxÞ ¼ 1 if x 
 p and 0 otherwise. It is not valid either for dogmatic possi-
bilistic distributions such that PðrÞ ¼ 0 for some non-contradictory proposi-
tion r. Indeed suppose p and r, p and q, are two logically independent pairs,
but, q 
 r. Suppose also pðxÞ > 0 whenever x 
 :r. Then p1ðxÞ > 0 for and
only for x 
 p ^ :r. Hence p2ðxÞ ¼ 1 if and only if x 
 q and 0 otherwise.
However, p3ðxÞ ¼ p2ðxÞ since q ^ :r ¼?. Hence p4ðxÞ ¼ 1 if and only if
x 
 p ^ q and 0 otherwise. So, p2 and p4 differ.

Remark. Note that if we allow to deal with sub-normalized possibility distri-
butions (namely A1 is no longer required), then there exists an obvious defi-
nition of conditioning given by

pðxjpÞ ¼ pðxÞ if x 2 ½p�;
0 otherwise:

�

However, with this definition we no longer have PðpjpÞ ¼ 1, and conditioning
would be nothing but a particular case of intersection.

We have defined conditioning upon formulas and interpretations. In the
following, we will also use conditioning on variables. This corresponds to
defining it for every possible instanciation of these variables. For example, let A
and B be two Boolean variables with domains DA ¼ fa;:ag and DB ¼ fb;:bg,
the conditional possibility distribution PðBjAÞ corresponds to the four values
PðbjaÞ, Pð:bjaÞ, Pðbj:aÞ and Pð:bj:aÞ. We will use the notation PðBjAÞ
(instead of pðBjAÞ) for conditional possibility distributions, since the instan-
ciations of B are literals, usually concerning more than one interpretation in X
(the set of interpretations induced by the language used).

3.3. Conditioning and material implication

In probability theory, it is clear that conditioning is different from material
implication. Namely, P ð:p _ qÞ 6¼ P ðqjpÞ, except if P ð: q ^ pÞ ¼ 0 for which
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the two probabilities are equal to 1. For instance, it is easy to show that the set
of constraints P ðaÞ ¼ r 2 ½0; 1�, P ðbjaÞ ¼ s 2 ½0; 1�, P ðbj:aÞ ¼ t 2 ½0; 1�, always
admits of a solution. The reason is straightforward: the first constraint defines
a probability distribution on DA while the others define a probability distri-
bution on other domains (for each instance of the variable A, a probability
distribution on a copy of DB is defined). The set of three constraints is con-
sistent since the a priori probability distribution P ðAÞ and the conditional
probability distributions P ðBjaÞ and PðBj:aÞ are defined, in some sense, on
independent languages.

However, as pointed out by Pearl [26], the set of constraints P ðaÞ ¼ s 2 ½0; 1�
and Pð:a _ bÞ ¼ t 2 ½0; 1� does not always admit of a solution (for example:
P ðaÞ ¼ 0:01 and Pð:a _ bÞ ¼ 0:9). The reason is that, here, the two constraints
are applied to the same probability distribution, that is on the same domain
DA � DB.

The links between min-based conditioning and material implication in
possibility theory are summarized in the following proposition:

Proposition 3. For every normalized possibility distribution p, we have
Pð:p _ qÞP PðqjmpÞP Pðp ^ qÞ.
Moreover, it can be easily checked that:

• PðqjmpÞ ¼ Pðp ^ qÞ if and only if Pðp ^ qÞ < Pðp ^ :qÞ or Pðp ^ qÞ ¼ 1,
• PðqjmpÞ ¼ Pð:p _ qÞ if and only if Pðp ^ qÞP Pðp ^ :qÞ or Pðp ^ :qÞ >

Pðp ^ qÞP Pð:pÞ.

It is clear that PðqjmpÞ and PðqÞ cannot be independently specified, since it is
forbidden to have PðpÞ6PðpjmqÞ < 1. However, if the product-based condi-
tioning is used, Pðqj�pÞ and PðpÞ are again independent quantities, like in
probability theory.

3.4. Decomposition based on the minimum

The decomposition of a possibility distribution consists in expressing a joint
possibility distribution as a combination of conditional possibility distribu-
tions. For this purpose, we can follow the same procedure as in probability
theory. Let fA1; . . . ;Ang be the set of variables which is ordered arbitrarily.
From the definition of min-based conditioning and for positive possibility
distributions, we have

pðA1 � � �AnÞ ¼ min½PðA1jA2 � � �AnÞ;PðA2 � � �AnÞ�:

When applying this definition to PðA2 � � �AnÞ repeatedly, then to
PðA3 � � �AnÞ; . . . ;PðAn�1AnÞ the joint possibility distribution is decomposed into

pðA1 � � �AnÞ ¼ min½PðA1jA2 � � �AnÞ; . . . ;PðAn�1jAnÞ;PðAnÞ�: ð2Þ
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This means that a possibility distribution pðA1 � � �AnÞ can be seen as the
combination, by the minimum operator, of conditional possibility distributions
PðAijAiþ1 � � �AnÞ.

It is obvious that, by construction, the conditional possibility distribution
PðAijAiþ1 � � �AnÞ associated with each variable Ai is normalized, that is

8ðaiþ1; . . . ; anÞ 2 Diþ1 � � � � � Dn; max
ak2Ai

Pðakjaiþ1; . . . ; anÞ ¼ 1:

The decomposition given by Eq. (2) can be simplified by assuming condi-
tional independence between variables. For instance, if A1 is independent of
Aiþ1 � � �An in the context A2 � � �Ai, then the expression PðA1jA2 � � �AnÞ can be
simplified into PðA1jA2 � � �AiÞ. Some results on the possibilistic independence
relation are given in Section 6.

There is not a unique decomposition of a possibility distribution since it
depends on the initial ordering between variables. Indeed, let us consider the
following example with p defined on fa;:ag � fb;:bg such that

pð:a;:bÞ ¼ 1; pða; bÞ ¼ pða;:bÞ ¼ 0:8; pð:a; bÞ ¼ 0:7:

There are two ways for decomposing this possibility distribution,
• either PðA;BÞ ¼ minðPðBjAÞ; pðAÞÞ, and then PðBjAÞ is described by the

matrix:

and pðAÞ by the values pðaÞ ¼ 0:8 and pð:aÞ ¼ 1,
• or pðA;BÞ ¼ minðPðAjBÞ; pðBÞÞ, and then PðAjBÞ is described by the matrix:

and pðBÞ by the values pðbÞ ¼ 0:8 and pð:bÞ ¼ 1.
It turns out that these two possible decompositions of the possibility distri-
bution p correspond to the two following possibilistic knowledge bases (as it
can be verified using the procedure presented in the following in Section 5.2):

R1 ¼ fð:b _ a; 0:3Þ; ð:a; 0:2Þg;
R2 ¼ fðb _ :a; 0:2Þ; ð:b _ a; 0:3Þ; ð:b; 0:2Þg:

These two possibilistic knowledge bases are semantically equivalent since they
give the same possibility distribution p (obtained by using Definition 3), which
can be also recovered by applying (2). We will see in the following section how
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to generate possibilistic knowledge bases from a set of conditional possibility
distributions. It can be checked that pðAjBÞ < pðBÞ is always obtained, unless
PðAjBÞ ¼ 1.

Remark. When conditioning with the product, the decomposition follows the
way used in probability

pðA1 � � �AnÞ ¼ PðA1jA2 � � �AnÞ � � � � �PðAn�1jAnÞ �PðAnÞ:

4. Directed possibilistic graphs

4.1. Background and notations on probabilistic causal networks

We first give some notations and definitions used in the remaining of this
article. Let V ¼ fA1;A2; . . . ;Ang be a set of variables. We denote by DA the
supposedly finite domain of the variable A and Di the domain of the variable
Ai, for short, instead of DAi . For Boolean variables, ai denotes any of the two
instances of Ai and :ai represents the other instance of Ai. X ; Y ; Z; . . . denote
subsets of variables from V , and DX ¼ �Ai2XDi ¼ fx1; x2; . . . ; xmg represents the
Cartesian product of variable domains in X. By x we denote any instance of X .
The set of interpretations X ¼ �Ai2V Di is simply the Cartesian product of all
variable domains in V. Depending on the context, interpretations are denoted
either by tuples: x ¼ ða1; . . . ; anÞ or by conjunctions: x ¼ a1 ^ � � � ^ an. If X is a
subset of variables, and x an instance of X which is the projection of x on X,
then we write x 
 x, or x ¼ xX . In particular, x 
 ai, or ai ¼ xA, means that ai

appears in x. More generally, if X � Y and the projection of instance y on X is
x, we write y 
 x.

This section briefly recalls the basic ideas of underlying probabilistic causal
networks [9,10,23,26] which are DAGs. The nodes represent variables (for ex-
ample, the temperature of a patient, the color of a car,. . .) and the edges encode
causal links (or influences) between these variables.Uncertainty is represented on
each node and expresses in a causal language the strength of the link between
variables. When there is an edge from node Ai to node Aj, node Ai is said to be a
parent of Aj. Parents of Aj are denoted by ParðAjÞ, and by uj we denote any in-
stance of ParðAjÞ, namely any element of the Cartesian product �Aj2ParðAiÞDj. A
probability measure P is associated with a graph G in the following way:
• For the nodes Ai which are roots of the graph (i.e., ParðAiÞ ¼ ;), we specify

the a priori probability degrees associated with each instance of Ai, namely
we supply every P ðaiÞ where ai 2 Di. The probabilities must satisfy the nor-
malization condition, i.e.

P
ai2Di

P ðaiÞ ¼ 1.
• For every other node Ai of the graph, we prescribe every conditional prob-

ability P ðaijuiÞ where ai 2 Di and ui range on all instances of ParðAiÞ. Con-
ditional probabilities should satisfy the following normalization condition:

146 S. Benferhat et al. / Internat. J. Approx. Reason. 29 (2002) 135–173



8ui 2 �Aj2ParðAiÞDj;
X
ai2Di

P ðaijuiÞ ¼ 1:

From these (a priori and conditional) probabilities associated with the
DAG, the definition of the joint probability distribution pBN (defined on every
elementary event) is given by the following expression, called probabilistic
chain rule

pBN ða1; . . . ; anÞ ¼
Y
i¼1;n

P ðaijxParðiÞÞ;

where ai is a possible instance of Ai,
Q

denotes the product, xParðiÞ is the
projection of ða1; . . . ; anÞ on �Aj2ParðAiÞDj.

Example 2. Consider the following DAG:

The set of Boolean variables is V ¼ fA;B;Cg. We need the values of the
following a priori and conditional probabilities: P ðaÞ, P ðbÞ and four values
P ðcja; bÞ for ða; bÞ 2 DA � DB. Then, the joint probability distribution is com-
puted by: pBN ðai; bj; ckÞ ¼ P ðckjai; bjÞ � P ðaiÞ � P ðbjÞ, with ai 2 DA, bj 2 DB and
ck 2 DC. For example, pBN ða; b;:cÞ ¼ P ð:cja; bÞ � P ðaÞ � PðbÞ.

The set of probabilistic constraints is always consistent and admits of a
solution. The joint probability distribution pBN given by the previous equation
allows to recover a priori and conditional probabilities given by the expert. The
consistency of constraints requires the use of DAGs [26]. Nevertheless, if we
had interpreted conditioning by material implication, the existence of a
solution would not be guaranteed even for a DAG structure, as seen in Section
3.3.

4.2. Definition of directed possibilistic graphs

We now define the directed possibilistic graphs, denoted by PG, which are
the possibilistic counterparts of previous causal networks. We also use a DAG
structure. The difference with probabilistic causal networks comes from the
uncertainty measure which is used: a priori (resp. conditional) probabilities are
replaced by a priori (resp. conditional) possibilities. Let us notice that it is
possible to express ignorance, i.e. it is not necessary to give the a priori
possibilities on a variable A if they are unknown. In such a case, they are equal
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to 1 for all possible instances of the variable). In the rest of the paper variables
are restricted to binary ones since we are concerned with the bridge between
possibilistic nets and possibilistic logic.

Remark. The restriction to binary variables is made for the purpose of relating
possibilistic graphs and possibilistic logic. The results of this section can be
extended to non-binary variables. Clearly, one of the expected computational
advantages of developing possibilistic causal networks concerns the easier
handling of non-binary variables.

The normalization conditions on each variable Ai ¼ fai;:aig of the graph
are:
• maxðPðaiÞ;Pð:aiÞÞ ¼ 1 (for a priori possibilities concerning root nodes Ai),

and
• for each ui 2 �Aj2ParðAiÞDj, maxðPðaijuiÞ;Pð:aijuiÞÞ ¼ 1 (for conditional pos-

sibilities concerning non-rooted nodes Ai).
In practice, data are not given in terms of conditional possibilities but in

terms of conditional necessities. Indeed, it is more convenient for experts to
express what they know for sure, instead of what is possible and consistent
with their knowledge. However, conditional possibilities are immediately
derived from conditional necessities using the duality property PðqjpÞ ¼
1� Nð:qjpÞ.

The two kinds of conditioning used in possibility theory lead to two different
ways of computing the joint possibility distributions.

Definition 6. Let PG be a directed possibilistic acyclic graph. Let x ¼
ða1; . . . ; anÞ be a given interpretation. Then, the joint possibility distribution
associated with a PG is computed with the following equation, called chain
rule:

pðxÞ ¼ �i¼1;nPðaijxParðiÞÞ;

where � represents either the minimum or the product operator, and
PðaijxParðiÞÞ are conditional possibilities in PG.

When the joint possibility distribution is computed with the minimum (resp.
product), the PG will be denoted by PGm (resp. PG�).

When conditioning in possibility theory is defined via the product, the
computation of the joint possibility distribution associated with PG is the same
as in probability theory. The reason is straightforward since the basic tools
used in the two theories for computing the joint distribution are the same.

Directed possibilistic graphs have been defined. The following section
studies their encoding in possibilistic logic.
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5. Encoding possibilistic graphs in possibilistic logic

The goal of this section is to translate a directed possibilistic graph into a
possibilistic logic base. We start by general considerations and new nota-
tions. Then we provide the translation for the two kinds of possibilistic
graphs.

5.1. The basic methodology

The starting point is that the directed possibilistic base associated to a
directed possibilistic graph is the result of the fusion of elementary bases.
These elementary bases are composed of formulas associated to the prior
and conditional possibilities attached to nodes of the directed possibilistic
graph.

Let fA1; . . . ;Ang be the set of all binary variables of PG. For the sake of
simplicity, a possibilistic causal network will be represented by a set of triples,
PG ¼ fðai; ui; aiÞ : ai ¼ PðaijuiÞ 6¼ 1 is an element of the graph}, 2 where ai is
an instance of the variable Ai and ui is an element of the Cartesian product of
the domains Dj of the variables Aj 2 ParðAiÞ.

With each isolated triple ða; u; aÞ of the directed possibilistic graph, where a
is an instance of variable A, is associated the single possibilistic formula
ð:a _ :u; 1� aÞ. Clearly, its associated possibility distribution pa;u is

pa;uðxÞ ¼
1 if x 
 :a _ :u;
a otherwise ðthat is if x 
 a ^ uÞ:

�

It is easy to check that the conditional possibilities are recovered from pa;u,
independently of the definition of conditioning. Indeed, Pa;uða ^ uÞ ¼ a holds
since every interpretation which satisfies a ^ u falsifies (:a _ :u; 1� a).
Moreover, Pa;uðuÞ ¼ maxðPa;uða ^ uÞ;Pa;uð:a ^ uÞÞ. As every interpretation
satisfying :a ^ u satisfies ð:a _ :u; 1� aÞ, we get Pa;uðuÞ ¼ 1. Note that
Pa;uðuÞ ¼ 1 only because we consider an isolated triple ða; u; aÞ, where the
parents of the parents of the variable A are not considered.

Therefore, if we locally apply min-based conditioning we get: Pa;uðajuÞ ¼ a
since Pa;uða ^ uÞ < Pa;uðuÞ. Now if we apply the product-based conditioning,
we have Pa;uðajuÞ ¼ Pa;uða ^ uÞ=Pa;uðuÞ ¼ a.

2 The restriction to the conditional possibilities different from 1 is done since only these

conditional possibilities are used for the computation of joint possibility distributions (since 1 is a

neutral element w.r.t. both minimum and product operator).

S. Benferhat et al. / Internat. J. Approx. Reason. 29 (2002) 135–173 149



5.2. Logical encoding of PGm

First we study the case where the fusion of possibility distributions associ-
ated with knowledge bases is made by means of the minimum operation.

The next proposition shows that the computation (given by Definition 6) of
the joint possibility distribution obtained from a directed possibilistic graph is
equivalent to the one obtained by combination, with the minimum, of the joint
possibility distributions associated with the formulas encoding the different
triples of the directed graph. More formally:

Proposition 4. Let pi be the possibility distribution associated with the possibi-
listic formula (ai; ui; ai). Then the joint possibility distribution computed from the
directed graph PGm is the same as the one obtained by combining the possibility
distributions pi’s with the minimum operator.

This proposition is easy to prove. Indeed, in the previous subsection it has
been noticed that the value of the local possibility distribution piðai ^ uiÞ in-
duced by (ai; ui; ai) coincides with the (local) conditional possibility value
PðaijuiÞ. Let x ¼ fa1; . . . ; ang be a possible interpretation. The possibility de-
gree of the interpretation x, obtained by combining local conditional possi-
bility distributions by the chain rule is thus equal to

pðxÞ ¼ minfai : ðai; ui; aiÞ 2 PGm;x 
 :ai _ :uig:
¼ min

i¼1;n
pi:

The following lemma describes the possibilistic knowledge base associated
with the combination of two possibility distributions by the minimum:

Lemma 3. Let R1 and R2 be two possibilistic knowledge bases. Let p1 and p2 be
the two possibility distributions associated with R1 and R2, respectively. Let pmin

be the combination with the minimum operator of p1 and p2, that is 8x,
pminðxÞ ¼ minðp1ðxÞ; p2ðxÞÞ. The resulting knowledge base corresponding to
pmin is simply: Rmin ¼ R1 [ R2.

The proof is easy and can be found for instance in [4,5]. Using the previous
proposition and lemma, the following corollary states what is exactly the
knowledge base associated with a directed possibilistic graph:

Corollary 1. The possibilistic knowledge base associated withPGm ¼ fðai; ui; aiÞ :
PðaijuiÞ ¼ ai 6¼ 1g is

R ¼ fð:ai _ :ui; 1� aiÞÞ : ðai; ui; aiÞ 2 PGmg:
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This result is important since it implies that the possibilistic logic reasoning
machinery can be applied to directed possibilistic graphs.

Example 3. Consider the following DAG:

Assume that the conditional possibility degrees are given by the following
tables:

So, PGm ¼ fð:a; ;; 3=4Þ; ðb; ac; 1=2Þ; ð:b;:ac; 1=4Þ; ðd;:c; 1=4Þ; ð:e; b:d;
3=4Þ; ðe;:bd; 1=2Þg.

The knowledge base associated with this DAG when conditioning is based
on the minimum operator is simply : R ¼ fða; 1=4Þ; ð:b _ :a _ :c; 1=2Þ;
ðb _ a _ :c; 3=4Þ; ð:d _ c; 3=4Þ; ðe _ :b _ d; 1=4Þ; ð:e _ b _ :d; 1=2Þg.

5.3. Logical encoding of product-based possibilistic networks

In this section, we show that it is also possible to encode directed possibi-
listic graphs based on the product into possibilistic logic. We follow the same
steps as in the previous section.
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Proposition 5. Let pi be the possibility distribution associated with the triple
(ai; ui; ai). Then the joint possibility distribution computed from the directed graph
PG� is the same as the one obtained by combining the possibility distributions pi

by the product operator.

It remains to find what is the possibilistic base associated with the combi-
nation of two possibility distributions by the product operator. This is sum-
marized in the following proposition [5]:

Proposition 6. Let R1 ¼ fðpi; aiÞ : i 2 Ig and R2 ¼ fðqj; bjÞ : j 2 Jg. Let p1 and
p2 be the two possibility distributions associated with R1 and R2, respectively. Let
p� be the combination with the product of p1 and p2. The resulting base associated
with p� is

C�ðR1;R2Þ ¼ R1 [ R2 [ fðpi _ qj; ai þ bj � ai � bjÞ :
i 2 I ; j 2 J ; pi _ qj 6¼ >g:

NB: The combination operator C� is commutative and associative, hence the
combination can be applied to m elements without taking care of the ordering
in which the elements are considered.

The following proposition shows that, for a given node A, the combination
of two knowledge bases induced by two triples dealing with this node is simply
the union of the two bases.

Proposition 7. Let A be a given node (or variable) of the PG, and let u1 6¼ u2 be
two instances of ParðAÞ, the set of parents of A. Suppose PG contains ða1; u1; a1Þ
and ða2; u2; a2Þ, where a1 and a2 are possibly equal. Let R1 ¼ fð:a1 _ :u1; a1Þg
and R2 ¼ fð:a2 _ :u2; a2Þg. Then C�ðR1;R2Þ ¼ R1 [ R2.

The proof is obvious since by construction u1 ^ u2 ¼?, hence
:u1 _ :u2 � > � :u1 _ :u2 _ :a1 _ :a2 hence the clause (:u1 _ :u2 _ :a1
_:a2; a1 þ a2 � a1 � a2) is a tautology that does not need to be added to
C�ðR1;R2Þ.

As a corollary of Proposition 7, it follows that the knowledge base resulting
from combining (with the product) formulas associated to the tuples of a given
node A, is simply the union of these formulas, i.e.,

RA ¼ fð:ai _ :ui; 1� aiÞ : ðai; ui; aiÞ 2 PGg:

Another corollary of the above propositions is:

Corollary 2. From Propositions 5–7, it follows that the knowledge base associ-
ated with the graph PG� is the combination by the product operator of the
knowledge bases associated with each node of the graph.
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Example 3 (continued). : Recall that PG� ¼ fð:a; ;; 3=4Þ; ðb; ac; 1=2Þ; ð:b;:ac;
1=4Þ; ðd;:c; 1=4Þ; ð:e; b:d; 3=4Þ; ðe;:bd; 1=2Þg. The knowledge bases associ-
ated to the different nodes of the DAG are (see Corollary 2):
• RA ¼ fða; 1=4Þg;
• RB ¼ fð:a _ :b _ :c; 1=2Þ; ða _ b _ :c; 3=4Þg;
• RC ¼ ;;
• RD ¼ fðc _ :d; 3=4Þg;
• RE ¼ fð:b _ d _ e; 1=4Þ; ðb _ :d _ :e; 1=2Þg.

Now let us combine them using C�:
• the combination of RA and RB leads to:

RAB ¼ C�ðRA;RBÞ ¼ RA [ RB [ fða _ b _ :c; 13=16Þg
¼ fða; 1=4Þ; ð:a _ :b _ :c; 1=2Þ; ða _ b _ :c; 13=16Þg

• (the formula ða _ b _ :c; 3=4Þ is removed since it is subsumed by ða _ b _ :c;
13=16ÞÞ;

• since RC ¼ ;, we have RABC ¼ C�ðRAB;RCÞ ¼ RAB;
• combining the result with RD gives

RABCD ¼ C�ðRABC ;RDÞ ¼ RABC [ RD [ fða _ c _ :d; 13=16Þg
¼ fða; 1=4Þ; ð: _ :b _ :c; 1=2Þ; ða _ b _ :c; 13=16Þ; ðc _ :d; 3=4Þ;
ða _ c _ :d; 13=16Þg;

• combining the result with RE leads to

RABCDE ¼ C�ðRABCD;REÞ
¼ RABCD [ RE [ fða _ :b _ d _ e; 7=16Þ; ða _ b _ :d _ :e; 5=8Þ;
ð:a _ :b _ :c _ d _ e; 5=8Þ; ða _ b _ :c _ :d _ :e; 29=32Þ;
ðb _ c _ :d _ :e; 7=8Þ; ða _ b _ c _ :d _ :e; 29=32Þg

¼ fða; 1=4Þ; ð:a _ :b _ :c; 1=2Þ; ða _ b _ :c; 13=16Þ; ðc _ :d; 3=4Þ;
ða _ c _ :d; 13=16Þ; ð:b _ d _ e; 1=4Þ; ðb _ :d _ :e; 1=2Þ;
ða _ :b _ d _ e; 7=16Þ; ða _ b _ :d _ :e; 5=8Þ;
ð:a _ :b _ :c _ d _ e; 5=8Þ; ða _ b _ :d _ :e; 29=32Þ;
ðb _ c _ :d _ :e; 7=8Þg:

This knowledge base contains 12 clauses while in the case of min we only
have 6. This clearly illustrates that the combination with the product leads to a
larger knowledge base than if we combine with the minimum, due to Propo-
sition 6. This comes from the fact that the product is not compatible with a
finite scale since it always adds formulas with intermediary levels, not already
present among the levels of the original knowledge bases.
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6. Recovering the initial causal data and independencies

6.1. Recovering the initial data

A natural question, when we compute a joint possibility distribution using
the chain rule, is to see if we can recover the a priori and conditional possi-
bilities one starts from. In probability theory the answer is always yes. The
following proposition shows that this is also the case if the chain rule is based
on the product:

Proposition 8. Let PðajuÞ be the conditional possibility distributions attached to
the variable A in the PG�. Let p� be the joint possibility distribution obtained
using the chain rule with the product, and P� its associated possibility measure.
Then, for conditional possibility distributions we have

P�ðajuÞ ¼ PðajuÞ:

The proof is given in Appendix A and uses the two following technical
lemmas:

Lemma 4. Let V be the set of all variables of a DAG. Let Y be a strict subset of
V, and y be a fixed instantiation of Y. Let Z ¼ V � Y . Then there exists z, in-
stance of Z, such that

�A;a;z;u:A2Z;z
a;z^y
uPðajuÞ ¼ 1;

where � is either min or product and u is the instanciation of ParðAÞ in
x ¼ z ^ y.

When Y ¼ ; Lemma 4 simply means that the joint distribution associated
with a possibilistic graph is normalized, independently of the definition of
conditioning. More generally, it says that marginalized possibility distributions
for any fixed y is also normalized.

Lemma 5. Let PðAijParðAiÞÞ be the conditional possibility distributions attached
to variables Ai in PG�, where � is either the minimum operator or the product
operator. Let p� be the joint possibility distribution obtained using the chain rule.
Then for each value a of each variable A and each instance u of ParðAÞ, we have
P�ða ^ uÞ ¼ PðajuÞ � P�ðuÞ.

Obviously, Lemma 5 implies Proposition 8 for �¼ product. However it
suggests that Proposition 8 does not hold when the minimum-based condi-
tioning is used, as illustrated by the following small example:

154 S. Benferhat et al. / Internat. J. Approx. Reason. 29 (2002) 135–173



Example 4. Let us consider the following graph:

with PðaÞ ¼ 1; Pð:aÞ ¼ 1=4; PðbjaÞ ¼ 1=3; Pð:bjaÞ ¼ 1 and Pðbj:aÞ ¼ 1=3;
Pð:bj:aÞ ¼ 1.

The joint possibility distribution is

pmðabÞ ¼ 1=3; pmða:bÞ ¼ 1;

pmð:abÞ ¼ 1=4; pmð:a:bÞ ¼ 1=4:

Clearly, we have Pmðbj:aÞ ¼ 1 6¼ 1=3 since pmð:abÞ ¼ pmð:aÞ ¼ 1=4.

The reason for not recovering the original values in the example is that the
conditional possibility distributions specified by the user are not coherent with
the properties of (ordinal) conditional possibility. Indeed, using the definition
of conditional possibility measure, recall that we always have:

If PðpjqÞ 6¼ 1; then PðpjqÞ ¼ Pðp ^ qÞ < PðqÞ:

We see clearly, from the previous example that this constraint is violated since
Pðbj:aÞ ¼ 1=3 6¼ 1 and Pðbj:aÞ > Pð:aÞ ¼ 1=4. Therefore, it is not surprising
if the above value 1/3 is not recovered.

This anomalous behaviour also exists in possibilistic logic, namely a possi-
bility distribution associated with a possibilistic base may fail to preserve the
original weights attached to formulas in the base. To be convinced, it is enough
to consider a small example where R ¼ fða; 0:8Þ; ða _ b; 0:4Þg. We can easily
check that NpRða _ bÞ ¼ 0:8. This is due to the fact that ða _ b; 0:4Þ is strictly
subsumed by ða; 0:8Þ.

Back to the causal network, the following proposition compares conditional
possibilities computed by the chain rule with the ones specified by the user.

Proposition 9. Let PðajuÞ be the conditional possibility distributions over the
variables A in the DAG. Let pm be the joint possibility distribution obtained using
the chain rule with the minimum-based conditioning. Then, either pmðajuÞ ¼
PðajuÞ or pmðajuÞ ¼ 1. And if pmðajuÞ ¼ 1 6¼ PðajuÞ, then PðajuÞ > pmðuÞ.

This means that the computed joint possibility distribution either preserves
the initial values or moves them up to 1 (this is observed in Example 4).

A PGm is said to be coherent if all of its initial data are recovered after
applying the chain rule.
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6.2. Recovering independencies

In possibility theory, the definition of independence between variables is not
unique [2,8,11]. The two following definitions are the most usual ones:

Definition 7 (Non-interactivity). A variable A and a set of variables Y are in-
dependent in the context of a set of variables Z, if and only if for each instance
ða; y; zÞ of ðA; Y ; ZÞ we have

Pða; yjzÞ ¼ minðPðajzÞ;PðyjzÞÞ:

Definition 8 (Causal independence). A variable A and a set of variables Y are
independent in the context of a set of variables Z, if and only if for each in-
stance ða; y; zÞ of ðA; Y ; ZÞ we have

PðajzÞ ¼ PðajyzÞ:

The following proposition shows that the joint possibility distribution
guarantees the ‘‘non-interactivity’’ independence relations from the structure of
the DAG, as in a probabilistic network:

Proposition 10. Let A be a given variable, and Y be a set of variables that contain
neither a parent of A nor any of its descendants. Let pm be the joint possibility
distribution computed from a DAG PGm using the min-based chain rule (in the
sense of Definition 6). Then A and Y are independent in the context of ParðAÞ in
the sense of the non-interactivity definition.

Note that there is no need to require that the DAG be coherent in order to
recover the independencies in the graph. The question of whether a joint
possibility distribution can be decomposed using a stronger definition of in-
dependence is under study [2].

Note that the above proposition does not hold if causal independence is
used instead of non-interactivity. Indeed, consider a simple DAG which con-
tains two unrelated nodes A and B. Assume that a priori possibilities are:
PðaÞ ¼ 0:8;Pð:aÞ ¼ 1; PðbÞ ¼ 0:5;Pð:bÞ ¼ 1.

It can be easily checked that PðaÞ ¼ 0:8 but PðajbÞ ¼ 1.

6.3. Structure of knowledge bases induced by a PGm

The knowledge bases constructed from PGms have a particular form.
Let fA1; . . . ;Ang be the ordering of variables prescribed by the DAG, such

that parents of each variable Ai are in fAiþ1; . . . ;Ang in the DAG. Then it can
be checked that the knowledge base associated with the graph is of the form
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R ¼ R1 [ � � � [ Rn;

where Ri is a knowledge base involving variable Ai and its parents only. It can
be checked that for each Ri we have ð:ai _ :ui; aiÞ 2 Ri iff PðaijuiÞ ¼
1� ai 2 PGm. Especially, each clause in Ri is a disjunction of an instance of Ai

and instances of all of its parents. We call such a set of clauses a clausal
completion of the variable Ai in the context of its parents.

As a preliminary step to the following section let us show that a clausal
possibilistic knowledge base where a variable appears in all clauses can be put
in a form similar to Ri. To this aim, let us define the notion of complete ex-
tension of a knowledge base with respect to a variable.

Definition 9. Let R be a possibilistic knowledge base in a clausal form, where all
clauses involve an instance of a variable A. Let X be the set of other variables
appearing in the clauses of R. A clausal completion of R with respect to
variable A denoted by EðRÞ, is the set of all clauses of the form ða _ :x; aÞ
where a is an instance of A, x is an instance of all variables in X, and
a ¼ maxfai : ða _ pi; aiÞ 2 R; x 
 :pig, with maxf;g ¼ 0.

Note that x is a conjunction of literals while pi is a disjunction thereof. The
idea is to change each disjunction into a set of maximal disjunctions involving
all variables.

Example 5. Let R ¼ fða _ b; 0:5Þ; ða _ c; 0:7Þg. Let us find the clausal comple-
tion of A. Then we can check that EðRÞ ¼ fða _ b _ :c; 0:5Þ; ða _ b _ c; 0:5Þ;
ða _ c _ :b; 0:7Þ; ða _ c _ b; 0:7Þg, which is semantically equivalent to R and to
EðRÞ ¼ fða _ b _ :c; 0:5Þ; ða _ c _ :b; 0:7Þ; ða _ c _ b; 0:7Þg.

Now we can prove:

Proposition 11. The two bases R and EðRÞ are equivalent.

The notion of clausal completion is instrumental for turning a possibilistic
knowledge base into a possibilistic network of the PGm kind, which is the topic
of the following section.

7. Encoding possibilistic bases into a PGm

In this section, we present the transformation of possibilistic knowledge
bases into directed possibilistic graphs PGm. One way to do it is to use
possibility distributions as intermediary step. Indeed, a knowledge base
leads to a possibility distribution, from which it is possible to build a PGm

(see Section 3.4). This would apply as well to PG�. However, this way is
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computationally expensive. So, we want to find the PGm directly from the
knowledge base.

The encoding of a possibilistic knowledge into a PGm is less straightforward
than the previous transformation. Indeed, we cannot directly view each for-
mula as a triple and then build the graph, but we need some pre-processing
steps, because as seen above the possibilistic base constructed from a PGm has
a special form. The constructed possibilistic graph PGm should be such that:
• the joint possibility distribution computed from the PGm using the minimum

operator should be the same as the one computed from the knowledge base
and

• the PGm constructed from the knowledge bases should be coherent.
As stated in the last sub-section, the knowledge base associated with a

possibilistic net has a special form. Therefore, we need to put the possibilistic
knowledge base in this special form.

To reach this aim, the construction of the causal network is obtained in
three steps: the first step simply consists in putting the knowledge base into a
clausal form and in removing tautologies. The second step consists in con-
structing the graph associated to an arbitrary ordering of variables, and the last
step computes the conditional possibilities associated to the constructed graph.

7.1. Putting bases in a clausal form and removing tautologies

In this step, a base R is rewritten into a semantically equivalent base R0.
Getting R0 consists in putting the knowledge base into a clausal form and in
removing tautologies. The following proposition shows how to put the base in
a clausal form first [12]:

Proposition 12. Let ðp; aÞ 2 R. Let fc1; . . . ; cng be the set of clauses encoding p in
classical logic. Let R0 be a new knowledge base obtained from R by replacing
ðp; aÞ by fðc1; aÞ; . . . ; ðcn; aÞg. Then the two knowledge bases R and R0 are se-
mantically equivalent.

Then removing tautologies still leads to an equivalent possibilistic base (see
Lemma 2). The removing of tautologies is an important point since this will
avoid having links in the graph which do not make sense. For example, the
tautological formula ð:a _ :y _ a; 1Þ might induce a spurrious link between A
and Y .

7.2. Constructing the graph

The second step consists in constructing the graph, namely the determina-
tion of the vertices (variables) of the graph and the parents of each vertex. The
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set of variables is simply the set of propositional symbols which appear in the
knowledge base. Moreover, since possibilistic logic is based on propositional
logic, then all variables are binary. To construct the graph, we first rank the
variables, according to an arbitrary numbering fA1;A2; . . . ;Ang of the vari-
ables. This ranking intends to mean that parents of each variable Ai can only be
in fAiþ1; . . . ;Ang (but they may fail to exist).

We first give some intuitive examples before presenting the technical con-
struction of the graph.

Example 6. Let R ¼ fðt; 0:6Þ; ðt _ v; 0:4Þg. From this knowledge base one may
think that the variable T depends on the variable V . However, we can easily
check that R is equivalent to the following one: R0 ¼ fðt; 0:6Þg, where clearly, V
has no influence on T . The formula ðt _ v; 0:4Þ is simply subsumed by
R� fðt _ v; 0:4Þg.

Subsumed beliefs are not the only ones which may induce fictitious depen-
dencies:

Example 7. Let R ¼ fða; 0:5Þ; ð:a _ b; 0:5Þg. In this base, neither ða; 0:5Þ nor
ð:a _ b; 0:5Þ is subsumed, and one can think that there is a relationship be-
tween the variables A and B. However, we can easily check that this base is
equivalent to R0 ¼ fða; 0:5Þ; ðb; 0:5Þg, where clearly A and B are unrelated.

So we are led to state:

Proposition 13. Let A be a variable, and ða _ p; aÞ be a clause of R containing the
instance a of A. If R ‘ ðp; aÞ, then the base R and the knowledge base R0 obtained
from R by replacing ða _ p; aÞ by ðp; aÞ are equivalent.

Intuitively, one could say that two variables are related if there is a clause
containing an instance of these two variables, and they are unrelated otherwise.
Example 8 shows that two variables can be related even if there is no clause in
the base containing an instance of each variable:

Example 8. Let R ¼ fðc _ a; 0:5Þ; ð:c _ b; 0:5Þg. In this base, if we could es-
tablish the dependence between variables only if there exists a clause containing
an instance of each of them, then clearly A and B would be unrelated. How-
ever, we can check that R ‘ ða _ b; 0:5Þ.

All these examples recall that logic is syntax independent, and graphs are
more suitable to exhibit independence and relevance relations.

Recall that our aim is to get a coherent PGm (where local conditional
possibility distributions can be retrieved by conditioning their min-based
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combination). The following example shows that it is enough to look only for
clauses of the base containing instances of the variable A:

Example 9. Let R ¼ fða _ b; 0:6Þ; ðc _ b; 0:5Þ; ðc _ a; 0:5Þg. Assume that the
parents of C are A and B. Clearly, if we compute the conditional possibilities
PðCjABÞ only from clauses containing C, namely
RC ¼ fðc _ b; 0:5Þ; ðc _ a; 0:5Þg, then it is not guaranteed to get a coherent
PGm. Indeed, in this example, if the computation of Pð:cj:a:bÞ is simply
based on RC, we get Pð:cj:a:bÞ ¼ 0:5 (since fðc _ b; 0:5Þ; ðc _ a; 0:5Þg
‘ ðc _ a _ b; 0:5Þ) but we can check that after computing the joint possibility
distribution pR : PRð:cj:a:bÞ ¼ 1.

This is due to the fact that we have both R ‘ ðc _ a _ b; 0:5Þ and
R ‘ ða _ b; 0:6Þ, hence: PRð:c:a:bÞ ¼ PRð:a:bÞ.

Indeed, ðc _ b; 0:5Þ and ðc _ a; 0:5Þ are not subsumed but ðc _ a _ b; 0:6Þ is
subsumed due to the clause ða _ b; 0:6Þ in R.

Based on these intuitive examples, we are now able to give the algorithm
which transforms a base into a DAG, given an arbitrary numbering of the
variables fA1; . . . ;Ang. It is composed of four iteratively repeated steps.

For each variable Ai, determine parents of Ai, compute the corresponding
clausal completion, remove redundant data and lastly produce a local base Ri

that will correspond to the part of the graph relating Ai to its parents. More
precisely:

For i ¼ 1; . . . ; n do
Begin

/* Determination of the local base for Ai */
1. Let ðai _ p; aÞ be a clause of R s.t. ai is an instance of Ai, and p is only built
from fAiþ1; . . . ;Ang

1.1. If ðai _ p; aÞ is subsumed, then remove it from R (due to Lemma 1)
1.2. If R ‘ ðp; aÞ, then replace ðai _ p; aÞ by ðp; aÞ (due to Proposition 12)

2. Let Ki be the set of clauses (ai _ p; a) in R s.t. p is only built from
fAiþ1; . . . ;Ang
3. The parents of the variable Ai are :
ParðAiÞ ¼ fAj : 9c 2 Ki such that ccontains an instance of Ajg
/* Compute the clausal completion of Ki */

4. Replace in R;Ki by its clausal completion EðKiÞ (due to Proposition 13)
/* Remove incoherent data */

5. For each ðai _ p; aÞ of R (where p is built from fAiþ1; . . . ;Ang) such that
R ‘ ðp; aÞ replace ðai _ p; aÞ by ðp; aÞ
/* Produce Ri */

6. Let Ri be the set of clauses ðai _ p; aÞ in R s.t. p is only built from
fAiþ1; . . . ;Ang
End
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The algorithm starts by determining the parents of each variable (steps 1–3),
and then proceeds (steps 4–6) in rewriting the knowledge base such that:

(i) it immediately gives the conditional possibility distributions attached to
each variable, and
(ii) ensures the recovery of original values when using the chain rule for com-
puting the joint possibility distributions.

Indeed, once EðKiÞ is computed, in order to evaluate PðaijuiÞ then
• either (:ai _ :ui; aÞ 62 EðKiÞ then PðaijuiÞ ¼ 1, or
• ð:ai _ :ui; aÞ 2 EðKiÞ, then,
� if R ‘ ð:ui; aÞ, then PðaijuiÞ ¼ 1 (since Pðai ^ uiÞ ¼ PðaiÞ. Hence

(:ai _ :p; a) can be removed from R),
� otherwise PðaijuiÞ ¼ 1� a.
Step 5 is not redundant with 1.1., since after computing the extension by

step 4, it may happen that some ðai _ p; aÞ will belong to R and R ‘ ðp; aÞ.
The result of the algorithm is a partition fR1; . . . ;Rng such that R1 [ � � � [ Rn

is semantically equivalent to R. Clearly, for i > 1, Ri does not contain any
variable from fA1; . . . ;Ai�1g. Moreover, RAi can be empty. In this case Ai has no
parents: it corresponds to the roots of the graph, and the a priori possibility
degrees on the domain of Ai are equal to 1. The subbases RAi ’s give a direct
computation of conditional possibility degrees as explained later. A graph as-
sociated to R is such that its vertices are the variables in R, and a link is drawn
from Aj to Ai iff Aj 2 ParðAiÞ, where ParðAiÞ is given by step 3 in the algorithm.
This graph is of course a DAG due to the a prori ordering of the variables.

Example 10. Let us consider the following base: R ¼ fða _ b; 0:7Þ; ð:a _ c_
:d; 0:7Þ; ða _ c _ d; 0:9Þ; ðb _ c; 0:8Þ; ð:b _ e; 0:2Þ; ð:d _ f ; 0:5Þg. R contains six
variables arbitrarily numbered in the following way: A1 ¼ A;A2 ¼ B;
A3 ¼ C;A4 ¼ D;A5 ¼ E and A6 ¼ F . The previous algorithm is applied to de-
termine both the graph and the conditional possibilities associated with it.
• Treatment of node A.

1. For the node A, the formulas ða _ b; 0:7Þ; ð:a _ c _ :d; 0:7Þ and
ða _ c _ d; 0:9Þ are considered. They are not subsumed and b, c _ :d
and c _ d are not inferred.

2. KA ¼ fða _ b; 0:7Þ; ð:a _ c _ :d; 0:7Þ; ða _ c _ d; 0:9Þg:
3. ParðAÞ ¼ fB;C;Dg:
4. EðKAÞ ¼ fða _ b _ c _ :d; 0:7Þ; ða _ b _ :c _ d; 0:7Þ; ða _ b _ :c _ :d;

0:7Þ; ð:a _ b _ c _ :d; 0:7Þ; ð:a _ :b _ c _ :d; 0:7Þða _ b _ c _ d; 0:9Þ;
ða _ :b _ c _ d; 0:9Þg.

5. R ¼ fða _ b _ :c _ d; 0:7Þ; ða _ b _ :c _ :d; 0:7Þ; ð:a _ :b _ c _ :d;
0:7Þ; ða _ b _ c _ d; 0:9Þ; ða _ :b _ c _ d; 0:9Þ; ðb _ c _ :d; 0:7Þ; ðb _ c;
0:8Þ; ð:b _ e; 0:2Þ; ð:d _ f ; 0:5Þg: (The formulas ða _ c _ :d; 0:7Þ and
ð:a _ b _ c _ :d; 0:7Þ are entailed by ðb _ c _ :d; 0:7Þ which is entailed
by R:)
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6. RA ¼ fða _ b _ :c _ d; 0:7Þ; ða _ b _ :c _ :d; 0:7Þ; ð:a _ :b _ c _ :d;
0:7Þ; ða _ b _ c _ d; 0:9Þ; ða _ :b _ c _ d; 0:9Þg:

• Treatment of node B.
1. For the node B, the formulas ðb _ c _ :d; 0:7Þ; ðb _ c; 0:8Þ; ð:b _ e; 0:2Þ

are considered. ðb _ c _ :d; 0:7Þ is subsumed by ðb _ c; 0:8Þ. The for-
mulas ðb _ c; 0:8Þ, ð:b _ e; 0:2Þ are not subsumed. c and e are not in-
ferred.

2. KB ¼ fðb _ c; 0:8Þ; ð:b _ e; 0:2Þg:
9. ParðBÞ ¼ fC;Eg:
3. EðKBÞ ¼ fðb _ c _ e; 0:8Þ; ðb _ c _ :e; 0:8Þ; ð:b _ c _ e; 0:2Þ; ð:b _ :c
_ e; 0:2Þg:

4. R ¼ fða _ b _ :c _ d; 0:7Þ; ða _ b _ :c _ :d; 0:7Þ; ð:a _ :b _ c _ :d;
0:7Þ; ða _ b _ c _ d; 0:9Þ; ða _ :b _ c _ d; 0:9Þ; ðb _ c _ e; 0:8Þ; ðb _ c_
:e; 0:8Þ; ð:b _ :c _ e; 0:2Þ; ðc _ e; 0:2Þ; ð:d _ f ; 0:5Þg:

6. RB ¼ fðb _ c _ e; 0:8Þ; ðb _ c _ :e; 0:8Þ; ð:b _ :c _ e; 0:2Þg:
• The same treatment is repeated for the nodes C, D, E and F.

The final base is

R ¼ fða _ b _ :c _ d; 0:7Þ; ða _ b _ :c _ :d; 0:7Þ; ð:a _ :b _ c _ :d; 0:7Þ;
ða _ b _ c _ d; 0:9Þ; ða _ :b _ c _ d; 0:9Þ; ðb _ c _ e; 0:8Þ; ðb _ c _ :e;
0:8Þ; ð:b _ :c _ e; 0:2Þ; ðc _ e; 0:2Þ; ð:d _ f ; 0:5Þg:

The final graph is

7.3. Determining the local conditional distributions

Once the graph is constructed we need to compute the conditional possi-
bilities attached to nodes. The computation of PðAijParðAiÞÞ is immediately
obtained from Ri: Let fR1; . . . ;Rng be the result of step 6 of the previous al-
gorithm. Let Ai be a variable and ParðAÞ ¼ fB1; . . . ;Bmg be the set of its par-
ents. Let a be an instance of Ai and u ¼ b1 ^ � � � ^ bm be an instance of ParðAiÞ.
Let:
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PðajuÞ ¼ 1� ai if ð:a _ :u; aiÞ 2 Ri;
1 otherwise:

�

Then we have:

Proposition 14. The possibility distribution associated to R and the possibility
distribution obtained from the graph using the minimum operator are equal,
namely: pR ¼ pm.

The proof is immediate using Proposition 3.

Example 11. The partition of the initial base is:

RA ¼ fða _ b _ :c _ d; 0:7Þ; ða _ b _ :c _ :d; 0:7Þ; ð:a _ :b _ c _ :d; 0:7Þ;
ða _ b _ c _ d; 0:9Þ; ða _ :b _ c _ d; 0:9Þg;

RB ¼ fðb _ c _ e; 0:8Þ; ðb _ c _ :e; 0:8Þ; ð:b _ :c _ e; 0:2Þg;
RC ¼ fðc _ e; 0:2Þg;
RD ¼ fð:d _ f ; 0:5Þg;RE ¼ RF ¼ ;:

Then, we find the conditional possibility distributions given by the following
table:
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Proposition 15. Let PðAijParðAiÞÞ be the min-based conditional possibility dis-
tributions attached to variables Ai in a causal network PGm obtained from a
possibilistic knowledge base R. Let pm be the joint possibility distribution obtained
by the chain rule with minimum from the causal network. Then the constructed
PGm is coherent, namely: PmðAijParðAiÞÞ ¼ PðAijParðAiÞÞ.

The proof follows immediately from the algorithm. Suppose
ð:a _ :u; aÞ 2 R. In step 5, when R ‘ ð:u; aÞ, then ð:a _ :u; aÞ is removed
from R. Therefore, if ð:a _ :u; aÞ 2 R (hence PðajuÞ ¼ 1� a in the net), then
R0ð:u; aÞ hence Nð:a _ :uÞ > 0 and Nð:uÞ ¼ 0, where N is the necessity
measure induced from pR (which is equal to pm). Hence Pmða ^ uÞ < 1, and
PmðuÞ ¼ 1, therefore using the definition of conditioning we have:
pmðajuÞ ¼ 1� a ¼ PðajuÞ.

8. Conclusion

This paper has bridged the gap between possibilistic logic and directed
possibilistic graphs. In the whole paper, a possibilistic logic formula is viewed
as a piece of uncertain knowledge whose certainty level is lower-bounded in
terms of a necessity measure. There exists another understanding of possibi-
listic formulas as expressing preferences under the form of goals with their
priority levels. Thus the graph associated with a possibilistic base can be also
used for figuring out how preferences interact.

We have shown that directed possibilistic graphs can be encoded into
possibilistic logic, for the two possible definitions of conditioning. It allows
the expert to express his knowledge using ‘‘causality’’ relations between
variables, and then the possibilistic logic machinery can be applied after the
computation of the corresponding possibilistic logic base. A future work
would be the study of the complexity of the conversion of a directed causal
network based on the product into possibilistic logic (with the min, the
conversion is of linear complexity) and the comparison of the cost of the
inference using the network directly with the one using the corresponding
possibilistic knowledge base.

The converse translation from a possibilistic logic base to a min-based
possibilistic graph has also been provided, given a prescribed ranking of the
variables. In this case, once the base is put under a canonical form, each
possibilistic logic formula is translated into one conditional possibility degree
in the possibilistic graph. An open problem, which is the counterpart of the
learning problem for Bayesian nets, is to optimize the total ordering of the
variables so as to simplify the structure of the possibilistic network induced by
a given possibilistic knowledge base. The syntactic translation of a possibilistic
logic base to a product-based possibilistic graph is achieved in [1].
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Apart from its conceptual appeal, the established equivalence between
possibilistic logic and min-based possibilistic DAGs may have some impact on
computational issues. Namely, local propagation algorithms in possibilistic
DAGs can be envisaged and a systematic comparison between the efficiency of
these algorithms and automated theorem proving methods in possibilistic logic
[25] is worthwhile investigating.

Appendix A. Proofs of technical propositions

Lemma 1. Let ðp; aÞ be a subsumed belief of R. Then R and R0 ¼ R� fðp; aÞg are
equivalent, namely pR ¼ pR0 .

Proof. Indeed, ðp; aÞ is a subsumed formula in R() R� fðp; aÞg ‘
ðp; aÞ () pR�fðp;aÞg6 pfðp;aÞg (soundness and completeness of possibilistic logic).
Hence, pR ¼ minðpR�fðp;aÞg; pfðp;aÞgÞ ¼ pR�fðp;aÞg: �

Proposition 2. Let p be a non-dogmatic possibility distribution, let p and q two
non-mutually exclusive propositions. Then if p1 ¼ pð�jpÞ and p2 ¼ p1ð�jqÞ, p3 ¼
pð�jqÞ and p4 ¼ p3ð�jpÞ. Then, p2 ¼ p4.

Proof. Let us prove that p2ðxÞ ¼ pðxjp ^ qÞ.

p2ðxÞ ¼
1 if pðxjpÞ ¼ PðqjpÞ and x 
 q;
pðxjpÞ if pðxjpÞ < PðqjpÞ and x 
 q;
0 if x 2 q:

8><
>:

But, if pðxjpÞ < PðqjpÞ and x 
 p, then pðxjpÞ ¼ pðxÞ and pðxÞ < PðpÞ
ðsince pðxÞ < 1Þ. If x 2 p p2ðxÞ ¼ 0 in any case. So

p2ðxÞ ¼

1 if pðxjpÞ ¼ PðqjpÞ and x 
 p ^ q;
pðxÞ < 1 if pðxÞ < PðqjpÞ and pðxÞ < PðpÞ

and x 
 p ^ q;
0 if x 
 :q _ :p:

8>><
>>:

Note that pðxÞ < PðpÞ and pðxÞ < PðqjpÞ, is equivalent to pðxÞ <
minðP ðqjpÞ;PðpÞÞ ¼ Pðp ^ qÞ.

Hence, p2ðxÞ ¼ pðxÞ < 1 if and only if pðxÞ < Pðp ^ qÞ for x 
 p ^ q.
Sop2ðxÞ ¼ 1ifandonlyifpðxÞ ¼ minðPðqjpÞ;PðpÞÞ ¼ Pðp ^ qÞ forx 
 p^q.

We conclude that p2ðxÞ ¼ pðxjp ^ qÞ. Hence p2ðxÞ ¼ p4ðxÞ by symmetry. �

Proposition 3. For every normalized possibility distribution p, we have
Pð:p _ qÞP PðqjmpÞP Pðp ^ qÞ. Moreover,
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• PðqjmpÞ ¼ Pðp ^ qÞ if and only if Pðp ^ qÞ < Pðp ^ :qÞ or Pðp ^ qÞ ¼ 1,
• PðqjmpÞ ¼ Pð:p _ qÞ if and only if Pðp ^ qÞP Pðp ^ :qÞ or Pðp ^ :qÞ >

Pðp ^ qÞP Pð:pÞ.

Proof. PðqjmpÞP Pðp ^ qÞ is obvious since PðqjmpÞ is either equal to 1, or to
Pðp ^ qÞ. Now, if PðqjmpÞ ¼ 1, this means that Pðq ^ pÞ ¼ PðpÞP Pðp ^ :qÞ.
Hence since Pð:p _ qÞP Pðp ^ qÞ, it follows that Pð:p _ qÞP
PðpÞP Pðp ^ :qÞ. Hence (by normalisation of p, maxðPð:p _ qÞ; Pðp ^ qÞÞ ¼
1Þ, Pð:p _ qÞ ¼ 1. If PðqjmpÞ 6¼ 1, this means that PðqjmpÞ ¼ Pðp ^ qÞ and the
equality Pð:p _ qÞP Pðp ^ qÞ obviously holds.

The second item is obvious by definition. As for the third, either
PðqjmpÞ ¼ 1; clearly, this is true only when Pðq ^ pÞP Pð:q ^ pÞ. Or
PðqjmpÞ ¼ Pðq _ :pÞ < 1, and then PðqjmpÞ ¼ Pðq ^ pÞ ¼ Pðq _ :pÞ, which is
equivalent to Pðp ^ :qÞ ¼ 1 > Pðp ^ qÞP Pð:pÞ. �

Lemma 4. Let V be the set of all variables of a DAG. Let Y be a strict subset of
V, and y be a fixed instantiation of Y. Let Z ¼ V � Y . Then there exists z, in-
stance of Z, such that

�A;a;z;u: A2Z;z
a;z^y
uPðajuÞ ¼ 1;

where � is either min or product and u is the instanciation of ParðAÞ in x ¼ z ^ y.

Proof. Note first that from the normalisation conditions on conditional pos-
sibility distributions we always have, for any fixed values a of A and u of
ParðAÞmaxðPðajuÞ;Pð:ajuÞÞ ¼ 1.

To prove the result, it is enough to exhibit a particular instance z of V � Y
such that PðajuÞ ¼ 1 for any a; u such that z 
 a and z ^ y 
 u.

The particular instance z is obtained in a constructive way by the following
algorithm:

Let Z ¼ V � Y , X ¼ Y , x ¼ y.
While Z 6¼ ; do
Begin

Select A in Z such that A has no parents in Z.
Select a an instance of A such that PðajuÞ ¼ 1 where u is the instance of
ParðAÞ prescribed by x that is, x 
 u (since ParðAÞ \ Z ¼ ;).
x ¼ x ^ a;
Z ¼ Z � fAg; X ¼ X [ fAg

End.
The algorithm first selects a variable A which has no parent in Z. Such a

variable always exists, otherwise there is a cycle in the possibilistic network.
Then we choose an instance a of A such that PðajuÞ ¼ 1 and x 
 u where u is
the instance of ParðAÞ prescribed by x. x is a global instantiation of the set of
variables X. At the beginning it coincides with y (which is fixed).
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When the valueaofAhasbeen chosen,we addA toX andwe removeA fromZ.
We repeat the previous step until we instantiate all the variables of Z, thus

building an interpretation x ¼ z ^ y which completes y.
At the end, we have for each value a of A such that z 
 a:

PðajuÞ ¼ 1 and z ^ y 
 u:

Therefore

max
z2DZ

�A2Z;z
a;z^y
uPðajuÞ ¼ 1: �

Lemma 5. Let PðAijParðAiÞÞ be the conditional possibility distributions attached
to variables Ai in PG�, where � is either the minimum operator or the product
operator. Let p� be the joint possibility distribution obtained using the chain rule.
Then for each value a of each variable A and each instance u of ParðAÞ, we have
P�ða ^ uÞ ¼ PðajuÞ�P�ðuÞ.

Proof. Let
• D ¼ the set of all descendants of A, and,
• Z ¼ V � ðD [ fAg [ ParðAÞÞ the set of variables not related to A.
In the following, z is an instance of Z and d an instance of D, and u an instance
of ParðAÞ. Note that for each B 2 V � ðD [ fAgÞ, ParðBÞ \ ðD [ fAgÞ ¼ ;.
Indeed, if there is C 2 ParðBÞ \ ðD [ fAgÞ, then this simply means that the
variable B is also a descendant of A and hence contradicts the fact that
B 2 V � D [ fAg.

Thenbydefinition,decomposing interpretationsxasa ^ u ^ z ^ d, andfixinga
and u, and, for any variable B denoting Pb the instance of ParðBÞ induced byx

P�ða ^ uÞ ¼ max
z;d
fp�ða ^ u ^ z ^ dÞg

¼ max
z;d
fPðajuÞ�fPðbjPbÞ : B 2 ParðAÞ;ParðAÞ ¼ ug

� fPðcjPcÞ : C 2 Z;ParðAÞ ¼ ug
� fPðrjPrÞ : R 2 D;ParðAÞ ¼ u;A ¼ ag

¼ PðajuÞ� max
z
f�fPðbjPbÞ : B 2 ParðAÞg�fPðcjPcÞ : C 2 Zg

�max
d
fPðrjPrÞ : R 2 D;ParðAÞ ¼ u;A ¼ ag

(since ParðBÞ � ParðAÞ [ Z;ParðCÞ � ParðAÞ [ Z for variables B 2 ParðAÞ;
C 2 Z in the above equations. However ParðRÞ can be any subset of V if
R 2 D.)

Note that maxdfPðrjPrÞ : R 2 D;ParðAÞ ¼ u;A ¼ ag ¼ 1 due to Lemma 4
(letting y ¼ a ^ u ^ z and varying d). Hence

P�ða ^ uÞ ¼ PðajuÞ�max
z
f�fPðbjPbÞ : B 2 ParðAÞg�fPðcjPcÞ : C 2 Zg:
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Using Lemma 4 again, we also have changing a into :a:
max

d
fPðrjPrÞ : R 2 D;ParðAÞ ¼ u;A ¼ :ag ¼ 1:

Moreover, since

maxðPðajuÞ;Pð:ajuÞÞ ¼ 1:

Let aZ ¼ maxzf�fPðbjPbÞ : B 2 ParðAÞg�fPðcjPcÞ : C 2 Zg, We then have

P�ða ^ uÞ
¼ PðajuÞ� maxfPðajuÞ� aZ ;Pð:ajuÞ� aZg
¼ PðajuÞ�
maxfPðajuÞ� aZ � max

d
fPðrjPrÞ : R 2 D;ParðAÞ ¼ u;A ¼ ag;

Pð:ajuÞ� aZ � max
d
fPðrjPrÞ : R 2 D;ParðAÞ ¼ u;A ¼ :agg

¼ PðajuÞ� maxfP� ða ^ uÞ;P� ð:a ^ uÞg
ðsince P� ða ^ uÞ is developed with respect to parents ofA; of

parents of A; and then to the remainder of variablesÞ
¼ PðajuÞ � P� ðuÞ: �

Proposition 8. Let PðajuÞ be the conditional possibility distributions over the
variables A in the PG�. Let p� be the joint possibility distribution obtained using
the chaining rule with the product, and P� its associated possibility measure.
Then, for any conditional possibility distribution, we have

P�ðajuÞ ¼ PðajuÞ:

Proof. The proof is immediate. Indeed, by definition,

P�ðajuÞ ¼ P�ða ^ uÞ
P�ðuÞ :

Moreover, from Lemma 5 we have P�ða ^ uÞ ¼ PðajuÞ �P�ðuÞ, therefore
P�ðajuÞ ¼ PðajuÞ: �

Proposition 9. Let PðajuÞ be the conditional possibility distributions over the
variables A in the DAG. Let pm be the joint possibility distribution obtained using
the chain rule with the minimum-based conditioning. Then either pmðajuÞ ¼
PðajuÞ or pmðajuÞ ¼ 1. And if pmðajuÞ ¼ 1 6¼ PðajuÞ, then PðajuÞ > pmðuÞ.

Proof. From Lemma 5, we have

Pmða ^ uÞ ¼ minðPðajuÞ;PmðuÞÞ:
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Then, we distinguish two cases:
• PðajuÞ ¼ 1, then Pmða ^ uÞ ¼ PmðuÞ, hence using the definition of condi-

tioning, we get

PmðajuÞ ¼ 1:

• PðajuÞ ¼ a < 1, then Pmða ^ uÞ ¼ minða;PmðuÞÞ.
If a6PmðuÞ, then PmðajuÞ ¼ a. If a > PmðuÞ, then Pmða ^ uÞ ¼ PmðuÞ, hence
using the definition of conditioning, we get

PmðajuÞ ¼ 1:

And it is clear that the only case where the conditional value is not recovered is
when a > PmðuÞ.

Proposition 10. Let A be a given variable, and Y be a set of variables that contain
neither a parent of A nor any of its descendants. Let pm be the joint possibility
distribution computed from a DAG PGm using the min-based chain rule (in the
sense of Definition 5). Then A and Y are independent in the context of ParðAÞ in
the sense of the non-interactivity definition.

Proof. Let

D ¼ the set of all descendants of A and

Z ¼ V � ðD [ fAg [ Y [ ParðAÞÞ the rest of remaining variables:

We first show that Pmða ^ y ^ uÞ ¼ minðPðajuÞ;Pmðy ^ uÞÞ.
Using similar computation than in Lemma 5, we have

Pmða^ y ^ uÞ ¼max
z;d
fpmða^ y ^ u^ z^ dÞg

¼max
z
fminfPðajuÞ;

minfPðejPeÞ;E 2 Y ;Y ¼ y;Z ¼ zg;
minfPðbjPbÞ : B 2 ParðAÞ;ParðAÞ ¼ u;Z ¼ zg;
minfPðcjPcÞ :C 2 Z;ParðAÞ ¼ u;Y ¼ y;Z ¼ zg;
max

d
fminfPðrjPrÞ : R2D;ParðAÞ ¼ u;Y ¼ y;A¼ a;Z ¼ zggg

(note that 8E 2 Y ;ParðEÞ � Z).
Let us denote:

• ae ¼ minfPðejPeÞ;E 2 Y ; Y ¼ y; Z ¼ zg,
• ab ¼ minfPðbjPbÞ : B 2 ParðAÞ;ParðAÞ ¼ u; Z ¼ zg,
• ac ¼ minfPðcjPcÞ : C 2 Z;ParðAÞ ¼ u; Y ¼ y; Z ¼ zg,
• ar;a ¼ maxd fminfPðrjPrÞ : R 2 D;ParðAÞ ¼ u; Y ¼ y;A ¼ a; Z ¼ zgg ¼ 1

from Lemma 4,
• ar;:a ¼ maxd fminfPðrjPrÞ : R 2 D;ParðAÞ ¼ u; Y ¼ y;A ¼ :a; Z ¼ zgg.
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Then

Pmða ^ y ^ uÞ ¼ max
z
fminfPðajuÞ; ae; ab; ac; ar;agg

¼ minðPðajuÞ;max
z
fminfae; ab; ac; ar;aggÞ

¼ minðPðajuÞ;maxfmax
z
fminfae; ab; ac; ar;agg;

max
z
fminfae; ab; ac; ar;:agggÞ

¼ minðPðajuÞ;maxfminfPðajuÞ;max
z
fminfae; ab; ac; ar;agg;

minfPð:ajuÞ;max
z
fminfae; ab; ac; ar;:aggggÞ

¼ minfPðajuÞ;maxfPmða ^ y ^ uÞ;Pmð:a ^ y ^ uÞgg
¼ minfPðajuÞ;Pmðy ^ uÞg:

Our aim is to show that

Pmða ^ yjuÞ ¼ minfPmðajuÞ;PmðyjuÞg

We distinguish two cases:
• Pmða ^ yjuÞ ¼ 1, this means, by using the definition of conditioning, that

Pmða ^ y ^ uÞ ¼ PmðuÞ, which implies that Pmðy ^ uÞ ¼ PmðuÞ and Pm

ða ^ uÞ ¼ PmðuÞ, which again implies PmðajuÞ ¼ PmðyjuÞ ¼ 1.
• Pmða ^ yjuÞ 6¼ 1, this means that Pmða ^ yjuÞ ¼ Pmða ^ y ^ uÞ < PmðuÞ. The

aim is to show that minfPmðajuÞ;PmðyjuÞg ¼ minPðajuÞ;Pmðy ^ uÞg.
We consider two cases:
• PmðyjuÞ 6¼ 1. Then Pmðy ^ uÞ ¼ PmðyjuÞ. Again, we have two cases to con-

sider:
� PmðajuÞ ¼ PðajuÞ, hence the equality trivially holds.
� PmðajuÞ 6¼ PðajuÞ. This implies using Proposition 9 that PmðajuÞ ¼ 1 and

PðajuÞ > PmðuÞP Pmðy ^ uÞ, hence the equality also holds.
• PmðyjuÞ ¼ 1 which implies Pmðy ^ uÞ ¼ PmðuÞ. In this case, it remains to

show that

PmðajuÞ ¼ minfPðajuÞ;PmðuÞg:

But this is Lemma 5. �

Proposition 11. The two bases R and EðRÞ are equivalent.

Proof. Variables involved in R and EðRÞ are A and Par(A). Hence, we can
restrict to interpretations built on these variables without any loss of generality.
Let a be an instance of A, u is an instance of ParðAÞ. We have:

pEðRÞða ^ uÞ ¼ 1� a if ð:a _ :u; aÞ 2 EðRÞ
¼ 1 otherwise
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() pEðRÞða ^ uÞ ¼ 1�maxfai : ð:a _ pi; aiÞ 2 R and pi 
 :ug
¼ 1 otherwise

() pEðRÞða ^ uÞ ¼ 1�maxfai : ð:a _ pi; aiÞ 2 R and u 
 :pig
¼ 1 otherwise

() pEðRÞða ^ uÞ ¼ 1�maxfai : ð:a _ pi; aiÞ 2 R and a ^ u 
 a ^ :pig
¼ 1 otherwise

() ¼ pRða ^ uÞ: �

Proposition 12. Let A be a variable, and ða _ p; aÞ be a clause of R containing the
instance a of A s.t. R ‘ ðp; aÞ. Then the base R and the knowledge base R0 ob-
tained from R by replacing ða _ p; aÞ by ðp; a) are equivalent.

Proof. The proof is immediate. Indeed:
• R0 implies all formulas in R, since the only formula which is in R but not in

R0, namely ða _ p; aÞ, is entailed by ðp; aÞ.
• R implies all formulas in R0, since the only formula which is in R0 but not in

R, namely ðp; aÞ, is entailed by R by hypothesis. �
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